IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v32y2016i2p283-291.html
   My bibliography  Save this article

Preventive maintenance of multistate systems subject to shocks

Author

Listed:
  • Maxim Finkelstein
  • Ilya Gertsbakh

Abstract

A new approach to optimal maintenance of multistate systems (networks) with binary components is developed. Univariate and multivariate signatures are used for description of system's structure and for efficient dealing with corresponding optimal maintenance problems. A system is subject to a shock process. Each shock destroys in a random way one of the operating components. The first strategy is to perform the preventive maintenance after the system enters one of the intermediate states between the initial UP state and the final absorbing DOWN state. The second strategy is to carry out preventive maintenance after the system experiences k shocks. Some illustrations and numerical results are presented. Copyright © 2015 John Wiley & Sons, Ltd.

Suggested Citation

  • Maxim Finkelstein & Ilya Gertsbakh, 2016. "Preventive maintenance of multistate systems subject to shocks," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(2), pages 283-291, March.
  • Handle: RePEc:wly:apsmbi:v:32:y:2016:i:2:p:283-291
    DOI: 10.1002/asmb.2151
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2151
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Alberti, Alexandre R. & Cavalcante, Cristiano A.V., 2020. "A two-scale maintenance policy for protection systems subject to shocks when meeting demands," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Tavangar, Mahdi & Hashemi, Marzieh, 2022. "Reliability and maintenance analysis of coherent systems subject to aging and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    4. Zarezadeh, Somayeh & Ashrafi, Somayeh, 2019. "On preventive maintenance of networks with components subject to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Zarezadeh, Somayeh & Asadi, Majid, 2019. "Coherent systems subject to multiple shocks with applications to preventative maintenance," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 124-132.
    6. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    7. Hashemi, M. & Asadi, M. & Tavangar, M., 2022. "Optimal maintenance strategies for coherent systems: A warranty dependent approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. María Luz Gámiz & Delia Montoro-Cazorla & María del Carmen Segovia-García & Rafael Pérez-Ocón, 2022. "MoMA Algorithm: A Bottom-Up Modeling Procedure for a Modular System under Environmental Conditions," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    9. Somayeh Ashrafi & Majid Asadi & Razieh Rostami, 2024. "On preventive maintenance of k-out-of-n systems subject to fatal shocks," Journal of Risk and Reliability, , vol. 238(2), pages 291-303, April.
    10. Vladimir Rykov & Olga Kochueva & Elvira Zaripova, 2023. "Renewable k -Out-of- n System with the Component-Wise Strategy of Preventive System Maintenance," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    11. Wei, Xiaohua & Bai, Sijun & Wu, Bei, 2023. "A novel shock-dependent preventive maintenance policy for degraded systems subject to dynamic environments and N-critical shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    12. Hamdan, K. & Tavangar, M. & Asadi, M., 2021. "Optimal preventive maintenance for repairable weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:32:y:2016:i:2:p:283-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.