IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v19y2003i4p327-347.html
   My bibliography  Save this article

A sequential condition‐based repair/replacement policy with non‐periodic inspections for a system subject to continuous wear

Author

Listed:
  • B. Castanier
  • C. Bérenguer
  • A. Grall

Abstract

This paper studies a condition‐based maintenance policy for a repairable system subject to a continuous‐state gradual deterioration monitored by sequential non‐periodic inspections. The system can be maintained using different maintenance operations (partial repair, as good as new replacement) with different effects (on the system state), costs and durations. A parametric decision framework (multi‐threshold policy) is proposed to choose sequentially the best maintenance actions and to schedule the future inspections, using the on‐line monitoring information on the system deterioration level gained from the current inspection. Taking advantage of the semi‐regenerative (or Markov renewal) properties of the maintained system state, we construct a stochastic model of the time behaviour of the maintained system at steady state. This stochastic model allows to evaluate several performance criteria for the maintenance policy such as the long‐run system availability and the long‐run expected maintenance cost. Numerical experiments illustrate the behaviour of the proposed condition‐based maintenance policy. Copyright © 2003 John Wiley & Sons, Ltd.

Suggested Citation

  • B. Castanier & C. Bérenguer & A. Grall, 2003. "A sequential condition‐based repair/replacement policy with non‐periodic inspections for a system subject to continuous wear," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 19(4), pages 327-347, October.
  • Handle: RePEc:wly:apsmbi:v:19:y:2003:i:4:p:327-347
    DOI: 10.1002/asmb.493
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.493
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Finkelstein, Maxim & Cha, Ji Hwan & Bedford, Tim, 2023. "Optimal preventive maintenance strategy for populations of systems that generate outputs," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. P Vrignat & M Avila & F Duculty & S Aupetit & M Slimane & F Kratz, 2012. "Maintenance policy: degradation laws versus hidden Markov model availability indicator," Journal of Risk and Reliability, , vol. 226(2), pages 137-155, April.
    3. Andriotis, C.P. & Papakonstantinou, K.G., 2021. "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Giorgio, Massimiliano & Pulcini, Gianpaolo, 2024. "The effect of model misspecification of the bounded transformed gamma process on maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Yan, Tao & Lei, Yaguo & Wang, Biao & Han, Tianyu & Si, Xiaosheng & Li, Naipeng, 2020. "Joint maintenance and spare parts inventory optimization for multi-unit systems considering imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. T F Lipi & J-H Lim & M J Zuo & W Wang, 2012. "A condition- and age-based replacement model using delay time modelling," Journal of Risk and Reliability, , vol. 226(2), pages 221-233, April.
    7. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Na, Kyumin & Yoon, Heonjun & Kim, Jaedong & Kim, Sungjong & Youn, Byeng D., 2023. "PERL: Probabilistic energy-ratio-based localization for boiler tube leaks using descriptors of acoustic emission signals," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Andriotis, C.P. & Papakonstantinou, K.G., 2019. "Managing engineering systems with large state and action spaces through deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Huynh, K.T., 2021. "An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Nguyen, Khanh T. P. & Do, Phuc & Huynh, Khac Tuan & Bérenguer, Christophe & Grall, Antoine, 2019. "Joint optimization of monitoring quality and replacement decisions in condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 177-195.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:19:y:2003:i:4:p:327-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.