IDEAS home Printed from https://ideas.repec.org/a/ukb/journl/y2015i234p52-72.html
   My bibliography  Save this article

National Bank of Ukraine Econometric Model for the Assessment of Banks’ Credit Risk and Support Vector Machine Alternative

Author

Listed:
  • Dmytro Pokidin

    (National Bank of Ukraine)

Abstract

Econometric models of credit scoring started with the introduction of Altman’s simple z-model in 1968, but since then these models have become more and more sophisticated, some even use Artificial Neural Networks (ANN) and Support Vector Machine (SVM) techniques. This paper focuses on the use of SVM as a model for default prediction. I start with an introduction to SVM as well as to some of its widespread alternatives. Then, these different techniques are used to model NBU data on banks’ clients, which allows us to compare the accuracy of SVM to the accuracy of other models. While SVM is generally more accurate, I discuss some of the features of SVM that make its practical implementation controversial. I then discuss some ways for overcoming those features. I also present the results of the Logistic Regression (Logit) model which will be used by the NBU.

Suggested Citation

  • Dmytro Pokidin, 2015. "National Bank of Ukraine Econometric Model for the Assessment of Banks’ Credit Risk and Support Vector Machine Alternative," Visnyk of the National Bank of Ukraine, National Bank of Ukraine, issue 234, pages 52-72.
  • Handle: RePEc:ukb:journl:y:2015:i:234:p:52-72
    DOI: 10.26531/vnbu2015.234.052
    as

    Download full text from publisher

    File URL: https://journal.bank.gov.ua/en/article/2015/234/03
    Download Restriction: no

    File URL: https://libkey.io/10.26531/vnbu2015.234.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    machine learning; svm; credit risk; scoring model;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ukb:journl:y:2015:i:234:p:52-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit (email available below). General contact details of provider: https://edirc.repec.org/data/nbugvua.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.