IDEAS home Printed from https://ideas.repec.org/a/udc/esteco/v43y2016i2p163-198.html
   My bibliography  Save this article

Predicción del fracaso empresarial. Una contribución a la síntesis de una teoría mediante el análisis comparativo de distintas técnicas de predicción

Author

Listed:
  • Pablo de Llano Monelos
  • Carlos Piñeiro Sánchez
  • Manuel Rodríguez López

    ()

Abstract

Este artículo ofrece un análisis comparativo de la eficacia de ocho métodos de pronóstico populares: univariante, regresiones lineal, discriminante y logit, particionamiento recursivo, rough sets, redes neuronales artificiales, y DEA. Nuestros objetivos son: aclarar el equilibrio complejidad-efectividad de cada metodología; identificar un subconjunto de variables como predictores significativos independientemente de la metodología; y discutir y relacionar estos hallazgos con la teoría financiera, para ayudar a consolidar las bases de una teoría del fallo financiero. Nuestros resultados indican que, cualquiera que sea la metodología, se pueden emitir predicciones fiables usando cuatro variables, que contienen información acerca de rentabilidad, estructura financiera, rotación, y flujos de caja.

Suggested Citation

  • Pablo de Llano Monelos & Carlos Piñeiro Sánchez & Manuel Rodríguez López, 2016. "Predicción del fracaso empresarial. Una contribución a la síntesis de una teoría mediante el análisis comparativo de distintas técnicas de predicción," Estudios de Economia, University of Chile, Department of Economics, vol. 43(2 Year 20), pages 163-198, December.
  • Handle: RePEc:udc:esteco:v:43:y:2016:i:2:p:163-198
    as

    Download full text from publisher

    File URL: http://www.estudiosdeeconomia.uchile.cl/index.php/EDE/article/viewFile/44103/46116
    Download Restriction: no

    More about this item

    Keywords

    Financial failure forecast; multivariate methods; artificial intelligence; machine learning;

    JEL classification:

    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • M4 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:udc:esteco:v:43:y:2016:i:2:p:163-198. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Verónica Kunze). General contact details of provider: http://edirc.repec.org/data/deuclcl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.