IDEAS home Printed from https://ideas.repec.org/a/udc/esteco/v41y2014i2p187-217.html
   My bibliography  Save this article

Determinación del riesgo de fracaso financiero mediante la utilización de modelos paramétricos, de inteligencia artificial, y de información de auditoría

Author

Listed:
  • Manuel Rodríguez
  • Carlos Piñeiro
  • Pablo De Llano

Abstract

En este artículo aportamos evidencia empírica de predicción del fallo financiero en empresas no financieras. Hemos desarrollado diversos modelos para la evaluación del riesgo de fallo financiero en PYME. Contrastada la capacidad predictiva de modelos paramétricos (análisis discriminante multivariante, LOGIT) comparando con la información aportada por la auditoria. Los modelos están fundamentados en variables financieras relevantes y ratios, de lógica financiera y en situaciones de estrés. Examinamos una muestra aleatoria de empresas, comprobando la capacidad predictiva en distintos momentos del tiempo, verificando si los modelos muestran señales anticipadas de futuros eventos de fallo financiero, simulando el impacto de los costes de los errores de estimación en función del modelo previsional. Los resultados sugieren que nuestros modelos son efectivos en el corto y medio plazo, ofreciendo mayor capacidad predictiva que las auditorías externas.

Suggested Citation

  • Manuel Rodríguez & Carlos Piñeiro & Pablo De Llano, 2014. "Determinación del riesgo de fracaso financiero mediante la utilización de modelos paramétricos, de inteligencia artificial, y de información de auditoría," Estudios de Economia, University of Chile, Department of Economics, vol. 41(2 Year 20), pages 187-217, December.
  • Handle: RePEc:udc:esteco:v:41:y:2014:i:2:p:187-217
    as

    Download full text from publisher

    File URL: http://www.econ.uchile.cl/uploads/publicacion/95bafcea1c54110ebfa1462b539c928a49ebeb4a.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Fallo financiero; dificultades financieras; previsión de la insolvencia; informe de auditoría.;
    All these keywords.

    JEL classification:

    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C89 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:udc:esteco:v:41:y:2014:i:2:p:187-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Verónica Kunze (email available below). General contact details of provider: https://edirc.repec.org/data/deuclcl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.