IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v54y2022i4p390-404.html
   My bibliography  Save this article

Optimal design and operation of a second-generation biofuels supply chain

Author

Listed:
  • H. Neil Geismar
  • Bruce A. McCarl
  • Stephen W. Searcy

Abstract

This article investigates how climate influences the value of adding preprocessing depots to a second-generation biorefinery’s supply chain. This is vital because humidity determines the amount of dry matter loss—exponential decay of energy content—suffered by biomass stored without preprocessing. The large volume of biomass required to fuel a biorefinery poses challenges in storage and in transportation. Further complications arise because the biomass is produced seasonally by hundreds of growers. Thus, recent failures of biorefineries may have been avoided, and future success may be achieved, by adding an intermediate layer to a biorefinery’s supply chain. A rigorous climate-based analysis of cost functions for each potential grower/depot pair leads to a stochastic program that optimizes the locations of depots, the assignment of growers to depots, and the volume of biomass stored fieldside vs. the volume stored as pelleted feedstock at depots. A computational study reveals that the humidity of the climate has much greater influence on the value of adding pre-processing depots to a second-generation biofuel supply chain than does transportation consolidation or any other parameter, endogenous or exogenous. Under favorable circumstances, our process reduces a biorefinery’s costs by over 30%, on average.

Suggested Citation

  • H. Neil Geismar & Bruce A. McCarl & Stephen W. Searcy, 2022. "Optimal design and operation of a second-generation biofuels supply chain," IISE Transactions, Taylor & Francis Journals, vol. 54(4), pages 390-404, April.
  • Handle: RePEc:taf:uiiexx:v:54:y:2022:i:4:p:390-404
    DOI: 10.1080/24725854.2021.1956022
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2021.1956022
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2021.1956022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:54:y:2022:i:4:p:390-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.