IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v41y2009i12p1067-1079.html
   My bibliography  Save this article

A single vehicle routing problem with fixed delivery and optional collections

Author

Listed:
  • G. Gutiérrez-Jarpa
  • V. Marianov
  • C. Obreque

Abstract

The Single-Vehicle Routing Problem with Fixed Delivery and Optional Collections considers a set of delivery customers receiving goods from a depot and a set of collection customers sending goods to the same depot. All delivery customers must be visited by the vehicle, while a collection customer is visited only if the capacity of the vehicle is large enough to fit the collected load and the visit reduces collection costs that would be otherwise incurred. The goal is to minimize the transportation and collection costs. A model is proposed and solved utilizing a branch-and-cut method. Efficient new cuts are proposed. Computational experience is offered on two sets of test problems. It is proved possible to solve instances that previous methods were unable to solve. The method was tested on larger instances.

Suggested Citation

  • G. Gutiérrez-Jarpa & V. Marianov & C. Obreque, 2009. "A single vehicle routing problem with fixed delivery and optional collections," IISE Transactions, Taylor & Francis Journals, vol. 41(12), pages 1067-1079.
  • Handle: RePEc:taf:uiiexx:v:41:y:2009:i:12:p:1067-1079
    DOI: 10.1080/07408170903113771
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07408170903113771
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07408170903113771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miranda, Pablo A. & Blazquez, Carola A. & Obreque, Carlos & Maturana-Ross, Javier & Gutierrez-Jarpa, Gabriel, 2018. "The bi-objective insular traveling salesman problem with maritime and ground transportation costs," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1014-1036.
    2. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    3. Marques, Alexandra & Soares, Ricardo & Santos, Maria João & Amorim, Pedro, 2020. "Integrated planning of inbound and outbound logistics with a Rich Vehicle Routing Problem with backhauls," Omega, Elsevier, vol. 92(C).
    4. Pablo A. Miranda-Gonzalez & Javier Maturana-Ross & Carola A. Blazquez & Guillermo Cabrera-Guerrero, 2021. "Exact Formulation and Analysis for the Bi-Objective Insular Traveling Salesman Problem," Mathematics, MDPI, vol. 9(21), pages 1-33, October.
    5. Bruno P. Bruck & Manuel Iori, 2017. "Non-Elementary Formulations for Single Vehicle Routing Problems with Pickups and Deliveries," Operations Research, INFORMS, vol. 65(6), pages 1597-1614, December.
    6. Xu, Jiuping & Yan, Fang & Li, Steven, 2011. "Vehicle routing optimization with soft time windows in a fuzzy random environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1075-1091.
    7. Shahparvari, Shahrooz & Abbasi, Babak & Chhetri, Prem, 2017. "Possibilistic scheduling routing for short-notice bushfire emergency evacuation under uncertainties: An Australian case study," Omega, Elsevier, vol. 72(C), pages 96-117.
    8. Santos, Maria João & Curcio, Eduardo & Mulati, Mauro Henrique & Amorim, Pedro & Miyazawa, Flávio Keidi, 2020. "A robust optimization approach for the vehicle routing problem with selective backhauls," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    9. Gutiérrez-Jarpa, Gabriel & Desaulniers, Guy & Laporte, Gilbert & Marianov, Vladimir, 2010. "A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows," European Journal of Operational Research, Elsevier, vol. 206(2), pages 341-349, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:41:y:2009:i:12:p:1067-1079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.