IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i19p6090-6114.html
   My bibliography  Save this article

A three-phase heuristic approach for reverse logistics network design incorporating carbon footprint

Author

Listed:
  • K. Nageswara Reddy
  • Akhilesh Kumar
  • Erica E. F. Ballantyne

Abstract

Reverse logistics (RL) is emerging as a significant area of activity for business and industry, motivated by both commercial profitability and wider environmental sustainability factors. However, planning and implementing an appropriate RL network within existing supply chains for product recovery that increases customer satisfaction, decreases overall costs, and provides a competitive advantage over other companies is complex. In the current study, we developed a mixed integer linear programming (MILP) model for a reverse logistics network design (RLND) in a multi-period setting. The RL network consists of collection centres, capacitated inspection and remanufacturing centres and customer zones to serve. Moreover, the model incorporates significant characteristics such as vehicle type selection and carbon emissions (through transportation and operations). Since the network design problems are NP-hard, we first propose a solution approach based on Benders decomposition (BD). Then, based on the structure of the problem we propose a three-phase heuristic approach. Finally, to establish the performance and robustness of the proposed solution approach, the results are compared with benchmark results obtained using CPLEX in terms of both solution quality and computational time. From the computational results, we validated that the three-phase heuristic approach performs superior to the BD and Branch &Cut approach.

Suggested Citation

  • K. Nageswara Reddy & Akhilesh Kumar & Erica E. F. Ballantyne, 2019. "A three-phase heuristic approach for reverse logistics network design incorporating carbon footprint," International Journal of Production Research, Taylor & Francis Journals, vol. 57(19), pages 6090-6114, October.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:19:p:6090-6114
    DOI: 10.1080/00207543.2018.1526422
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1526422
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1526422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahra Homayouni & Mir Saman Pishvaee & Hamed Jahani & Dmitry Ivanov, 2023. "A robust-heuristic optimization approach to a green supply chain design with consideration of assorted vehicle types and carbon policies under uncertainty," Annals of Operations Research, Springer, vol. 324(1), pages 395-435, May.
    2. Mohammed Alkahtani & Aiman Ziout & Bashir Salah & Moath Alatefi & Abd Elatty E. Abd Elgawad & Ahmed Badwelan & Umar Syarif, 2021. "An Insight into Reverse Logistics with a Focus on Collection Systems," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    3. Yaping Ren & Xinyu Lu & Hongfei Guo & Zhaokang Xie & Haoyang Zhang & Chaoyong Zhang, 2023. "A Review of Combinatorial Optimization Problems in Reverse Logistics and Remanufacturing for End-of-Life Products," Mathematics, MDPI, vol. 11(2), pages 1-24, January.
    4. Reddy, K. Nageswara & Kumar, Akhilesh & Choudhary, Alok & Cheng, T. C. Edwin, 2022. "Multi-period green reverse logistics network design: An improved Benders-decomposition-based heuristic approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 735-752.
    5. Navid Zarbakhshnia & Devika Kannan & Reza Kiani Mavi & Hamed Soleimani, 2020. "A novel sustainable multi-objective optimization model for forward and reverse logistics system under demand uncertainty," Annals of Operations Research, Springer, vol. 295(2), pages 843-880, December.
    6. Hailin Wu & Fengming Tao & Bo Yang, 2020. "Optimization of Vehicle Routing for Waste Collection and Transportation," IJERPH, MDPI, vol. 17(14), pages 1-26, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:19:p:6090-6114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.