IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v53y2015i15p4511-4527.html
   My bibliography  Save this article

A prognostics-based spare part ordering and system replacement policy for a deteriorating system subjected to a random lead time

Author

Listed:
  • Zhaoqiang Wang
  • Changhua Hu
  • Wenbin Wang
  • Xiangyu Kong
  • Wei Zhang

Abstract

Prognostics-based spare part ordering and system replacement (PSOSR) policies are at the forefront of the prevalent prognostics and health management discipline. However, almost all of the existing researches in this domain ignore the stochasticity of the lead time. With this in mind, this paper proposes a PSOSR policy based on the real-time health condition of a deteriorating system subjected to a random lead time. In doing so, the degradation path of the interested system is modelled by a Wiener process, and the associated life distributions can be predicted recursively according to the real-time health condition of the system. In turn, the proposed policy can also be updated dynamically based on these real-time obtained life distributions. The policy, which – in addition to incorporating the stochasticity of the lead time – integrates the decision-making issues of both spare part ordering and system replacement – is finally applied to a case study of an inertial navigation system served in a type of aircraft. The experimental results validate the policy’s effectiveness and superiority.

Suggested Citation

  • Zhaoqiang Wang & Changhua Hu & Wenbin Wang & Xiangyu Kong & Wei Zhang, 2015. "A prognostics-based spare part ordering and system replacement policy for a deteriorating system subjected to a random lead time," International Journal of Production Research, Taylor & Francis Journals, vol. 53(15), pages 4511-4527, August.
  • Handle: RePEc:taf:tprsxx:v:53:y:2015:i:15:p:4511-4527
    DOI: 10.1080/00207543.2014.988892
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2014.988892
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2014.988892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaohong & Zeng, Jianchao, 2017. "Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 479-498.
    2. Sleptchenko, Andrei & van der Heijden, Matthieu, 2016. "Joint optimization of redundancy level and spare part inventories," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 64-74.
    3. Lin, X. & Basten, R.J.I. & Kranenburg, A.A. & van Houtum, G.J., 2017. "Condition based spare parts supply," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 240-248.
    4. Liu, Xinbao & Yang, Tianji & Pei, Jun & Liao, Haitao & Pohl, Edward A., 2019. "Replacement and inventory control for a multi-customer product service system with decreasing replacement costs," European Journal of Operational Research, Elsevier, vol. 273(2), pages 561-574.
    5. Hui-Ying Wang & Zhao-Qiang Wang, 2022. "A condition-based preventive replacement policy with imperfect manual inspection for a two-stage deterioration process," Journal of Risk and Reliability, , vol. 236(2), pages 225-236, April.
    6. Ramin Moghaddass & Şeyda Ertekin, 2018. "Joint optimization of ordering and maintenance with condition monitoring data," Annals of Operations Research, Springer, vol. 263(1), pages 271-310, April.
    7. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:53:y:2015:i:15:p:4511-4527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.