IDEAS home Printed from https://ideas.repec.org/a/taf/tjorxx/v69y2018i3p372-383.html
   My bibliography  Save this article

Combined quay crane assignment and quay crane scheduling with crane inter-vessel movement and non-interference constraints

Author

Listed:
  • Ghazwan Alsoufi
  • Xinan Yang
  • Abdellah Salhi

Abstract

Integrated models of the quay crane assignment problem (QCAP) and the quay crane scheduling problem (QCSP) exist. However, they have shortcomings in that some do not allow movement of quay cranes between vessels, others do not take into account precedence relationships between tasks, and yet others do not avoid interference between quay cranes. Here, an integrated and comprehensive optimization model that combines the two distinct QCAP and QCSP problems which deals with the issues raised is put forward. The model is of the mixed-integer programming type with the objective being to minimize the difference between tardiness cost and earliness income based on finishing time and requested departure time for a vessel. Because of the extent of the model and the potential for even small problems to lead to large instances, exact methods can be prohibitive in computational time. For this reason an adapted genetic algorithm (GA) is implemented to cope with this computational burden. Experimental results obtained with branch-and-cut as implemented in CPLEX and GA for small to large-scale problem instances are presented. The paper also includes a review of the relevant literature.

Suggested Citation

  • Ghazwan Alsoufi & Xinan Yang & Abdellah Salhi, 2018. "Combined quay crane assignment and quay crane scheduling with crane inter-vessel movement and non-interference constraints," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(3), pages 372-383, March.
  • Handle: RePEc:taf:tjorxx:v:69:y:2018:i:3:p:372-383
    DOI: 10.1057/s41274-017-0226-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1057/s41274-017-0226-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41274-017-0226-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chargui, Kaoutar & Zouadi, Tarik & Sreedharan, V. Raja & El Fallahi, Abdellah & Reghioui, Mohamed, 2023. "A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency," Omega, Elsevier, vol. 118(C).
    2. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:69:y:2018:i:3:p:372-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.