IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v14y2011i8p1383-1398.html
   My bibliography  Save this article

Multivariate L�vy processes with dependent jump intensity

Author

Listed:
  • Roberto Marf�

Abstract

In this work we propose a new and general approach to build dependence in multivariate L�vy processes. We fully characterize a multivariate L�vy process whose margins are able to approximate any L�vy type. Dependence is generated by one or more common sources of jump intensity separately in jumps of any sign and size and a parsimonious method to determine the intensities of these common factors is proposed. Such a new approach allows the calibration of any smooth transition between independence and a large amount of linear dependence and provides greater flexibility in calibrating nonlinear dependence than in other comparable L�vy models in the literature. The model is analytically tractable and a straightforward multivariate simulation procedure is available. An empirical analysis shows an accurate multivariate fit of stock returns in terms of linear and nonlinear dependence. A numerical illustration of multi-asset option pricing emphasizes the importance of the proposed new approach for modeling dependence.

Suggested Citation

  • Roberto Marf�, 2011. "Multivariate L�vy processes with dependent jump intensity," Quantitative Finance, Taylor & Francis Journals, vol. 14(8), pages 1383-1398, July.
  • Handle: RePEc:taf:quantf:v:14:y:2011:i:8:p:1383-1398
    DOI: 10.1080/14697688.2011.606822
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2011.606822
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2011.606822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laura Ballotta & Efrem Bonfiglioli, 2016. "Multivariate asset models using Lévy processes and applications," The European Journal of Finance, Taylor & Francis Journals, vol. 22(13), pages 1320-1350, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    2. Laura Ballota & Griselda Deelstra & Grégory Rayée, 2015. "Quanto Implied Correlation in a Multi-Lévy Framework," Working Papers ECARES ECARES 2015-36, ULB -- Universite Libre de Bruxelles.
    3. Patrizia Semeraro, 2022. "Multivariate tempered stable additive subordination for financial models," Mathematics and Financial Economics, Springer, volume 16, number 3, February.
    4. Erdinc Akyildirim & Alper A. Hekimoglu & Ahmet Sensoy & Frank J. Fabozzi, 2023. "Extending the Merton model with applications to credit value adjustment," Annals of Operations Research, Springer, vol. 326(1), pages 27-65, July.
    5. Andrey Itkin & Alexander Lipton, 2014. "Efficient solution of structural default models with correlated jumps and mutual obligations," Papers 1408.6513, arXiv.org, revised Nov 2014.
    6. Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2020. "Correlating L\'evy processes with Self-Decomposability: Applications to Energy Markets," Papers 2004.04048, arXiv.org, revised Jul 2020.
    7. Florence Guillaume, 2013. "The αVG model for multivariate asset pricing: calibration and extension," Review of Derivatives Research, Springer, vol. 16(1), pages 25-52, April.
    8. Andrey Itkin, 2017. "Modelling stochastic skew of FX options using SLV models with stochastic spot/vol correlation and correlated jumps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(6), pages 485-519, November.
    9. Roberto Marfè, 2012. "A Multivariate Pure-Jump Model With Multi-Factorial Dependence Structure," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-30.
    10. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    11. Baron Law, 2021. "Correlation Estimation in Hybrid Systems," Papers 2111.06042, arXiv.org, revised Jul 2023.
    12. M. Gardini & P. Sabino & E. Sasso, 2021. "The Variance Gamma++ Process and Applications to Energy Markets," Papers 2106.15452, arXiv.org.
    13. Ballotta, Laura & Fusai, Gianluca & Marazzina, Daniele, 2019. "Integrated structural approach to Credit Value Adjustment," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1143-1157.
    14. Piergiacomo Sabino, 2021. "Normal Tempered Stable Processes and the Pricing of Energy Derivatives," Papers 2105.03071, arXiv.org.
    15. Roman N. Makarov, 2023. "Option Pricing and Portfolio Optimization under a Multi-Asset Jump-Diffusion Model with Systemic Risk," Risks, MDPI, vol. 11(12), pages 1-24, December.
    16. Adland, Roar & Benth, Fred Espen & Koekebakker, Steen, 2018. "Multivariate modeling and analysis of regional ocean freight rates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 194-221.
    17. Boris Buchmann & Kevin W. Lu & Dilip B. Madan, 2018. "Calibration for Weak Variance-Alpha-Gamma Processes," Papers 1801.08852, arXiv.org, revised Jul 2018.
    18. Carole Bernard & Oleg Bondarenko & Steven Vanduffel, 2021. "A model-free approach to multivariate option pricing," Review of Derivatives Research, Springer, vol. 24(2), pages 135-155, July.
    19. Kyriakos Georgiou & Athanasios N. Yannacopoulos, 2023. "Probability of Default modelling with L\'evy-driven Ornstein-Uhlenbeck processes and applications in credit risk under the IFRS 9," Papers 2309.12384, arXiv.org.
    20. Tianyao Chen & Xue Cheng & Jingping Yang, 2019. "Common Decomposition of Correlated Brownian Motions and its Financial Applications," Papers 1907.03295, arXiv.org, revised Nov 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2011:i:8:p:1383-1398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.