IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Strange Periodic Attractors in a Prey-Predator System with Infected Prey

  • Frank Hilker
  • Horst Malchow
Registered author(s):

    Strange periodic attractors with complicated, long-lasting transient dynamics are found in a prey-predator model with disease transmission in the prey. The model describes viral infection of a phytoplankton population and grazing by zooplankton. The analysis of the three-dimensional system of ordinary differential equations yields several semi-trivial stationary states, among them two saddle-foci, and the sudden (dis-)appearance of a continuum of degenerated nontrivial equilibria. Along this continuum line, the equilibria undergo a fold-Hopf (zero-pair) bifurcation (also called zip bifurcation). The continuum only exists in the bifurcation point of the saddle-foci. Especially interesting is the emergence of strange periodic attractors, stabilizing themselves after a repeated torus-like oscillation. This form of coexistence is related to persistent and permanent ecological communities and to bursting phenomena.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Mathematical Population Studies.

    Volume (Year): 13 (2006)
    Issue (Month): 3 ()
    Pages: 119-134

    in new window

    Handle: RePEc:taf:mpopst:v:13:y:2006:i:3:p:119-134
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:mpopst:v:13:y:2006:i:3:p:119-134. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.