IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v43y2014i15p3148-3161.html
   My bibliography  Save this article

Failure Time of Non Homogeneous Gamma Process

Author

Listed:
  • Christian Paroissin
  • Ali Salami

Abstract

We consider the non homogeneous gamma process as a degradation model. The hitting time of a deterministic or random level is studied here. We provide its distribution (both cdf and pdf) explicitly in the first case and in the second case when the threshold is exponentially or gamma distributed. The general case for a random threshold can be approximated by considering mixtures of Erlang distributions. Aging properties are also discussed in this article.

Suggested Citation

  • Christian Paroissin & Ali Salami, 2014. "Failure Time of Non Homogeneous Gamma Process," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(15), pages 3148-3161, August.
  • Handle: RePEc:taf:lstaxx:v:43:y:2014:i:15:p:3148-3161
    DOI: 10.1080/03610926.2012.694546
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2012.694546
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2012.694546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Nguyen, Khanh T.P. & Fouladirad, Mitra & Grall, Antoine, 2018. "Model selection for degradation modeling and prognosis with health monitoring data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 105-116.
    3. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    4. Chatenet, Q. & Remy, E. & Gagnon, M. & Fouladirad, M. & Tahan, A.S., 2021. "Modeling cavitation erosion using non-homogeneous gamma process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Liu, Bin & Zhao, Xiujie & Liu, Guoquan & Liu, Yiqi, 2020. "Life cycle cost analysis considering multiple dependent degradation processes and environmental influence," Reliability Engineering and System Safety, Elsevier, vol. 197(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:43:y:2014:i:15:p:3148-3161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.