IDEAS home Printed from
   My bibliography  Save this article

Semiparametric Estimation of Additive Quantile Regression Models by Two-Fold Penalty


  • Heng Lian


In this article, we propose a model selection and semiparametric estimation method for additive models in the context of quantile regression problems. In particular, we are interested in finding nonzero components as well as linear components in the conditional quantile function. Our approach is based on spline approximation for the components aided by two Smoothly Clipped Absolute Deviation (SCAD) penalty terms. The advantage of our approach is that one can automatically choose between general additive models, partially linear additive models, and linear models in a single estimation step. The most important contribution is that this is achieved without the need for specifying which covariates enter the linear part, solving one serious practical issue for models with partially linear additive structure. Simulation studies as well as a real dataset are used to illustrate our method.

Suggested Citation

  • Heng Lian, 2012. "Semiparametric Estimation of Additive Quantile Regression Models by Two-Fold Penalty," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 337-350, March.
  • Handle: RePEc:taf:jnlbes:v:30:y:2012:i:3:p:337-350
    DOI: 10.1080/07350015.2012.693851

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. HONDA, Toshio & ING, Ching-Kang & WU, Wei-Ying, 2017. "Adaptively weighted group Lasso for semiparametric quantile regression models," Discussion Papers 2017-04, Graduate School of Economics, Hitotsubashi University.
    2. Xu, Qifa & Niu, Xufeng & Jiang, Cuixia & Huang, Xue, 2015. "The Phillips curve in the US: A nonlinear quantile regression approach," Economic Modelling, Elsevier, vol. 49(C), pages 186-197.
    3. repec:spr:aistmt:v:69:y:2017:i:4:d:10.1007_s10463-016-0566-9 is not listed on IDEAS
    4. repec:spr:aistmt:v:70:y:2018:i:3:d:10.1007_s10463-017-0599-8 is not listed on IDEAS
    5. Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
    6. Yang, Jing & Yang, Hu, 2016. "A robust penalized estimation for identification in semiparametric additive models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 268-277.
    7. Lian, Heng & Meng, Jie & Fan, Zengyan, 2015. "Simultaneous estimation of linear conditional quantiles with penalized splines," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 1-21.
    8. Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:30:y:2012:i:3:p:337-350. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.