IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i509p270-288.html
   My bibliography  Save this article

Regularization Methods for High-Dimensional Instrumental Variables Regression With an Application to Genetical Genomics

Author

Listed:
  • Wei Lin
  • Rui Feng
  • Hongzhe Li

Abstract

In genetical genomics studies, it is important to jointly analyze gene expression data and genetic variants in exploring their associations with complex traits, where the dimensionality of gene expressions and genetic variants can both be much larger than the sample size. Motivated by such modern applications, we consider the problem of variable selection and estimation in high-dimensional sparse instrumental variables models. To overcome the difficulty of high dimensionality and unknown optimal instruments, we propose a two-stage regularization framework for identifying and estimating important covariate effects while selecting and estimating optimal instruments. The methodology extends the classical two-stage least squares estimator to high dimensions by exploiting sparsity using sparsity-inducing penalty functions in both stages. The resulting procedure is efficiently implemented by coordinate descent optimization. For the representative L 1 regularization and a class of concave regularization methods, we establish estimation, prediction, and model selection properties of the two-stage regularized estimators in the high-dimensional setting where the dimensionality of covariates and instruments are both allowed to grow exponentially with the sample size. The practical performance of the proposed method is evaluated by simulation studies and its usefulness is illustrated by an analysis of mouse obesity data. Supplementary materials for this article are available online.

Suggested Citation

  • Wei Lin & Rui Feng & Hongzhe Li, 2015. "Regularization Methods for High-Dimensional Instrumental Variables Regression With an Application to Genetical Genomics," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 270-288, March.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:270-288
    DOI: 10.1080/01621459.2014.908125
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.908125
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.908125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Wei & Gao, Yang & Zhou, Wei & Fan, Qingliang, 2021. "Endogenous treatment effect estimation using high-dimensional instruments and double selection," Statistics & Probability Letters, Elsevier, vol. 169(C).
    2. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    3. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    4. Gold, David & Lederer, Johannes & Tao, Jing, 2020. "Inference for high-dimensional instrumental variables regression," Journal of Econometrics, Elsevier, vol. 217(1), pages 79-111.
    5. Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
    6. Ziyu Wang & Yuhao Zhou & Jun Zhu, 2022. "Fast Instrument Learning with Faster Rates," Papers 2205.10772, arXiv.org, revised Oct 2022.
    7. Wang, Steven Shuye & Xu, Kuan & Zhang, Hao, 2019. "A microstructure study of circuit breakers in the Chinese stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    8. Susan M. Shortreed & Ashkan Ertefaie, 2017. "Outcome‐adaptive lasso: Variable selection for causal inference," Biometrics, The International Biometric Society, vol. 73(4), pages 1111-1122, December.
    9. Qinqin Hu & Lu Lin, 2022. "Feature Screening in High Dimensional Regression with Endogenous Covariates," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 949-969, October.
    10. Ziyu Wang & Yucen Luo & Yueru Li & Jun Zhu & Bernhard Scholkopf, 2022. "Spectral Representation Learning for Conditional Moment Models," Papers 2210.16525, arXiv.org, revised Dec 2022.
    11. Zhang Haixiang & Zheng Yinan & Zhang Zhou & Gao Tao & Joyce Brian & Zhang Wei & Hou Lifang & Liu Lei & Yoon Grace & Schwartz Joel & Vokonas Pantel & Colicino Elena & Baccarelli Andrea, 2017. "Regularized estimation in sparse high-dimensional multivariate regression, with application to a DNA methylation study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(3), pages 159-171, August.
    12. Yiqi Lin & Frank Windmeijer & Xinyuan Song & Qingliang Fan, 2022. "On the instrumental variable estimation with many weak and invalid instruments," Papers 2207.03035, arXiv.org, revised Dec 2023.
    13. Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2018. "Variable Selection in Causal Inference using a Simultaneous Penalization Method," Journal of Causal Inference, De Gruyter, vol. 6(1), pages 1-16, March.
    14. Nandana Sengupta & Fallaw Sowell, 2020. "On the Asymptotic Distribution of Ridge Regression Estimators Using Training and Test Samples," Econometrics, MDPI, vol. 8(4), pages 1-25, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:270-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.