IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Nonparametric Estimation for Censored Mixture Data With Application to the Cooperative Huntington’s Observational Research Trial

  • Yuanjia Wang
  • Tanya P. Garcia
  • Yanyuan Ma
Registered author(s):

    This work presents methods for estimating genotype-specific outcome distributions from genetic epidemiology studies where the event times are subject to right censoring, the genotypes are not directly observed, and the data arise from a mixture of scientifically meaningful subpopulations. Examples of such studies include kin-cohort studies and quantitative trait locus (QTL) studies. Current methods for analyzing censored mixture data include two types of nonparametric maximum likelihood estimators (NPMLEs; Type I and Type II) that do not make parametric assumptions on the genotype-specific density functions. Although both NPMLEs are commonly used, we show that one is inefficient and the other inconsistent. To overcome these deficiencies, we propose three classes of consistent nonparametric estimators that do not assume parametric density models and are easy to implement. They are based on inverse probability weighting (IPW), augmented IPW (AIPW), and nonparametric imputation (IMP). AIPW achieves the efficiency bound without additional modeling assumptions. Extensive simulation experiments demonstrate satisfactory performance of these estimators even when the data are heavily censored. We apply these estimators to the Cooperative Huntington’s Observational Research Trial (COHORT), and provide age-specific estimates of the effect of mutation in the Huntington gene on mortality using a sample of family members. The close approximation of the estimated noncarrier survival rates to that of the U.S. population indicates small ascertainment bias in the COHORT family sample. Our analyses underscore an elevated risk of death in Huntington gene mutation carriers compared with that in noncarriers for a wide age range, and suggest that the mutation equally affects survival rates in both genders. The estimated survival rates are useful in genetic counseling for providing guidelines on interpreting the risk of death associated with a positive genetic test, and in helping future subjects at risk to make informed decisions on whether to undergo genetic mutation testing. Technical details and additional numerical results are provided in the online supplementary materials.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 500 (December)
    Pages: 1324-1338

    in new window

    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1324-1338
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1324-1338. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.