IDEAS home Printed from
   My bibliography  Save this article

Does Marriage Boost Men’s Wages?: Identification of Treatment Effects in Fixed Effects Regression Models for Panel Data


  • Michael E. Sobel


Social scientists have generated a large and inconclusive literature on the effect(s) of marriage on men’s wages. Researchers have hypothesized that the wage premium enjoyed by married men may reflect both a tendency for more productive men to marry and an effect of marriage on productivity. To sort out these explanations, researchers have used fixed effects regression models for panel data to adjust for selection on unobserved time-invariant confounders, interpreting coefficients for the time-varying marriage variables as effects. However, they did not define these effects or give conditions under which the regression coefficients would warrant a causal interpretation. Consequently, they failed to appropriately adjust for important time-varying confounders and misinterpreted their results. Regression models for panel data with unobserved time-invariant confounders are also widely used in many other policy-relevant contexts and the same problems arise there. This article draws on recent statistical work on causal inference with longitudinal data to clarify these problems and help researchers use appropriate methods to model their data. A basic set of treatment effects is defined and used to define derived effects. Causal models for panel data with unobserved time-invariant confounders are defined and the treatment effects are reexpressed in terms of these models. Ignorability conditions under which the parameters of the causal models are identified from the regression models are given. Even when these hold, a number of interesting and important treatment effects are typically not identified.

Suggested Citation

  • Michael E. Sobel, 2012. "Does Marriage Boost Men’s Wages?: Identification of Treatment Effects in Fixed Effects Regression Models for Panel Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 521-529, June.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:521-529 DOI: 10.1080/01621459.2011.646917

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    2. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    3. Fan, Jianqing & Wang, Yazhen, 2007. "Multi-Scale Jump and Volatility Analysis for High-Frequency Financial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1349-1362, December.
    4. Jianqing Fan & Jingjin Zhang & Ke Yu, 2008. "Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios," Papers 0812.2604,
    5. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
    6. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    7. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    8. Nijman, T.E. & de Roon, F.A. & Werker, B.J.M., 2001. "Testing for Mean-Variance spanning with short sales constraints and transaction costs : The case of emerging markets," Other publications TiSEM f4a3551a-d7ae-4c22-8813-b, Tilburg University, School of Economics and Management.
    9. Yingying Li & Per A. Mykland, 2007. "Are volatility estimators robust with respect to modeling assumptions?," Papers 0709.0440,
    10. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    11. de Roon, F.A. & Nijman, T.E. & Werker, B.J.M., 1998. "Testing for mean-variance spanning with short sales constraints and transaction costs : The case of emerging markets," Discussion Paper 1998-07, Tilburg University, Center for Economic Research.
    12. Jean Jacod & Yingying Li & Per A. Mykland & Mark Podolskij & Mathias Vetter, 2007. "Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9," CREATES Research Papers 2007-43, Department of Economics and Business Economics, Aarhus University.
    13. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
    14. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Trifkovic Neda, 2015. "Spillover Effects of International Standards: Work Conditions in Vietnamese Small and Medium Enterprises," WIDER Working Paper Series 047, World Institute for Development Economic Research (UNU-WIDER).
    2. repec:spr:demogr:v:54:y:2017:i:3:d:10.1007_s13524-017-0566-2 is not listed on IDEAS

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:521-529. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.