IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i497p1-11.html
   My bibliography  Save this article

Nonparametric Covariate-Adjusted Association Tests Based on the Generalized Kendall's Tau

Author

Listed:
  • Wensheng Zhu
  • Yuan Jiang
  • Heping Zhang

Abstract

Identifying the risk factors for comorbidity is important in psychiatric research. Empirically, studies have shown that testing multiple correlated traits simultaneously is more powerful than testing a single trait at a time in association analysis. Furthermore, for complex diseases, especially mental illnesses and behavioral disorders, the traits are often recorded in different scales, such as dichotomous, ordinal, and quantitative. In the absence of covariates, nonparametric association tests have been developed for multiple complex traits to study comorbidity. However, genetic studies generally contain measurements of some covariates that may affect the relationship between the risk factors of major interest (such as genes) and the outcomes. While it is relatively easy to adjust for these covariates in a parametric model for quantitative traits, it is challenging to adjust for covariates when there are multiple complex traits with possibly different scales. In this article, we propose a nonparametric test for multiple complex traits that can adjust for covariate effects. The test aims to achieve an optimal scheme of adjustment by using a maximum statistic calculated from multiple adjusted test statistics. We derive the asymptotic null distribution of the maximum test statistic and also propose a resampling approach, both of which can be used to assess the significance of our test. Simulations are conducted to compare the Type I error and power of the nonparametric adjusted test to the unadjusted test and other existing adjusted tests. The empirical results suggest that our proposed test increases the power through adjustment for covariates when there exist environmental effects and is more robust to model misspecifications than some existing parametric adjusted tests. We further demonstrate the advantage of our test by analyzing a dataset on genetics of alcoholism.

Suggested Citation

  • Wensheng Zhu & Yuan Jiang & Heping Zhang, 2012. "Nonparametric Covariate-Adjusted Association Tests Based on the Generalized Kendall's Tau," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 1-11, March.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:1-11
    DOI: 10.1080/01621459.2011.643707
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2011.643707
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:stabio:v:9:y:2017:i:1:d:10.1007_s12561-016-9175-7 is not listed on IDEAS
    2. Weiming Zhang & Michael P. Epstein & Tasha E. Fingerlin & Debashis Ghosh, 0. "Links Between the Sequence Kernel Association and the Kernel-Based Adaptive Cluster Tests," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 0, pages 1-13.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:1-11. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/UASA20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.