IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i8p1708-1720.html
   My bibliography  Save this article

Two steps generalized maximum entropy estimation procedure for fitting linear regression when both covariates are subject to error

Author

Listed:
  • Amjad D. Al-Nasser

Abstract

This paper presents a procedure utilizing the generalized maximum entropy (GME) estimation method in two steps to quantify the uncertainty of the simple linear structural measurement error model parameters exactly. The first step estimates the unknowns from the horizontal line, and then the estimates were used in a second step to estimate the unknowns from the vertical line. The proposed estimation procedure has the ability to minimize the number of unknown parameters in formulating the GME system within each step, and hence reduce variability of the estimates. Analytical and illustrative Monte Carlo simulation comparison experiments with the maximum likelihood estimators and a one-step GME estimation procedure were presented. Simulation experiments demonstrated that the two steps estimation procedure produced parameter estimates that are more accurate and more efficient than the classical estimation methods. An application of the proposed method is illustrated using a data set gathered from the Centre for Integrated Government Services in Delma Island - UAE to predict the association between perceived quality and the customer satisfaction.

Suggested Citation

  • Amjad D. Al-Nasser, 2014. "Two steps generalized maximum entropy estimation procedure for fitting linear regression when both covariates are subject to error," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1708-1720, August.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:8:p:1708-1720
    DOI: 10.1080/02664763.2014.888544
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.888544
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Al-Rawwash & Amjad D. Al-Nasser, 2013. "Repeated measures and longitudinal data analysis using higher-order entropies," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(1), pages 100-111, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:8:p:1708-1720. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.