IDEAS home Printed from
   My bibliography  Save this article

Error variance estimation in semi-functional partially linear regression models


  • Germán Aneiros
  • Nengxiang Ling
  • Philippe Vieu


This paper focuses on partially linear regression models with several real and functional covariates. The aim is to construct an estimate of the variance of the error. In our model, a real-valued response variable is explained by the sum of an unknown linear combination of the components of a multivariate random variable and an unknown transformation of a functional random variable, and the second sample moment based on residuals from a semiparametric fit is proposed for estimating the error variance. Then, the asymptotic normality and the law of the iterated logarithm of such estimator are obtained. Finally, a simulation study illustrates the finite sample behaviour of the estimator, while an application to real data shows the usefulness of the proposed methodology, more specifically for confidence region construction.

Suggested Citation

  • Germán Aneiros & Nengxiang Ling & Philippe Vieu, 2015. "Error variance estimation in semi-functional partially linear regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 316-330, September.
  • Handle: RePEc:taf:gnstxx:v:27:y:2015:i:3:p:316-330
    DOI: 10.1080/10485252.2015.1042376

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Tiejun Tong & Yuedong Wang, 2005. "Estimating residual variance in nonparametric regression using least squares," Biometrika, Biometrika Trust, vol. 92(4), pages 821-830, December.
    2. Maity, Arnab & Huang, Jianhua Z., 2012. "Partially linear varying coefficient models stratified by a functional covariate," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1807-1814.
    3. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    4. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    5. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    6. Heng Lian, 2011. "Functional partial linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 115-128.
    7. Isabel Casas & Irene Gijbels, 2012. "Unstable volatility: the break-preserving local linear estimator," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 883-904, December.
    8. Gao, Jiti, 1995. "The laws of the iterated logarithm of some estimates in partly linear models," Statistics & Probability Letters, Elsevier, vol. 25(2), pages 153-162, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Chaouch, Mohamed, 2019. "Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 129-148.
    2. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    3. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.
    4. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    5. Yuejin Zhou & Yebin Cheng & Wenlin Dai & Tiejun Tong, 2018. "Optimal difference-based estimation for partially linear models," Computational Statistics, Springer, vol. 33(2), pages 863-885, June.
    6. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    7. Nengxiang Ling & Germán Aneiros & Philippe Vieu, 2020. "kNN estimation in functional partial linear modeling," Statistical Papers, Springer, vol. 61(1), pages 423-444, February.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:27:y:2015:i:3:p:316-330. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.