IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v21y2009i4p427-440.html
   My bibliography  Save this article

A goodness-of-fit test for a varying-coefficients model in longitudinal studies

Author

Listed:
  • Wang-Li Xu
  • Li-Xing Zhu

Abstract

In this paper, we construct an empirical process-based test to examine the adequacy of a varying-coefficient model. A Monte Carlo approach is applied to approximate the null distribution of the test. Beyond the desired features that are shared by the existing empirical process-based tests, the Monte Carlo approximation makes the test self-invariant such that studentisation for the test statistic is not needed. Thus, the variance of residuals, as a studentising constant that is model dependent and may deteriorate the power of test, is no need to estimate. Simulations and an example are provided to illustrate our methodology.

Suggested Citation

  • Wang-Li Xu & Li-Xing Zhu, 2009. "A goodness-of-fit test for a varying-coefficients model in longitudinal studies," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(4), pages 427-440.
  • Handle: RePEc:taf:gnstxx:v:21:y:2009:i:4:p:427-440
    DOI: 10.1080/10485250902721806
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250902721806
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250902721806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianqing Fan & Wenyang Zhang, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731, December.
    2. Winfried Stute & Li‐Xing Zhu, 2002. "Model Checks for Generalized Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 535-545, September.
    3. J. Fan & J.‐T. Zhang, 2000. "Two‐step estimation of functional linear models with applications to longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 303-322.
    4. Chiang C-T. & Rice J. A & Wu C. O, 2001. "Smoothing Spline Estimation for Varying Coefficient Models With Repeatedly Measured Dependent Variables," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 605-619, June.
    5. Hulin Wu & Hua Liang, 2004. "Backfitting Random Varying‐Coefficient Models with Time‐Dependent Smoothing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(1), pages 3-19, March.
    6. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wangli Xu & Xu Guo, 2013. "Nonparametric checks for varying coefficient models with missing response at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 459-482, May.
    2. Wangli Xu & Xu Guo & Lixing Zhu, 2012. "Goodness-of-fitting for partial linear model with missing response at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 103-118.
    3. Wangli Xu & Lixing Zhu, 2013. "Testing the adequacy of varying coefficient models with missing responses at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 53-69, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qihua & Zhang, Riquan, 2009. "Statistical estimation in varying coefficient models with surrogate data and validation sampling," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2389-2405, November.
    2. Tang Qingguo & Cheng Longsheng, 2008. "M-estimation and B-spline approximation for varying coefficient models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 611-625.
    3. Qiu, Jia & Li, Degao & You, Jinhong, 2015. "SCAD-penalized regression for varying-coefficient models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 100-118.
    4. Wang-Li Xu & Li-Xing Zhu, 2008. "Goodness-of-fit testing for varying-coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(2), pages 129-146, September.
    5. Yiqiang Lu & Riquan Zhang, 2009. "Smoothing spline estimation of generalised varying-coefficient mixed model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 815-825.
    6. Zhaoping Hong & Yuao Hu & Heng Lian, 2013. "Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 887-908, October.
    7. Li, XiaoLi & You, JinHong, 2012. "Error covariance matrix correction based approach to functional coefficient regression models with generated covariates," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 263-281.
    8. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    9. Lijie Gu & Li Wang & Wolfgang Härdle & Lijian Yang, 2014. "A simultaneous confidence corridor for varying coefficient regression with sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 806-843, December.
    10. Ghosal, Rahul & Maity, Arnab, 2022. "A Score Based Test for Functional Linear Concurrent Regression," Econometrics and Statistics, Elsevier, vol. 21(C), pages 114-130.
    11. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
    12. Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.
    13. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
    14. Wang, Qihua & Xue, Liugen, 2011. "Statistical inference in partially-varying-coefficient single-index model," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 1-19, January.
    15. Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
    16. Wangli Xu & Lixing Zhu, 2013. "Testing the adequacy of varying coefficient models with missing responses at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 53-69, January.
    17. Chen, Yixin & Wang, Qin & Yao, Weixin, 2015. "Adaptive estimation for varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 17-31.
    18. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    19. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    20. Olga Klopp & Marianna Pensky, 2013. "Sparse High-dimensional Varying Coefficient Model : Non-asymptotic Minimax Study," Working Papers 2013-30, Center for Research in Economics and Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:21:y:2009:i:4:p:427-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.