IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v20y2017i14p1562-1570.html
   My bibliography  Save this article

and characterization of open-cell structures of trabecular bone

Author

Listed:
  • S. J. Ramos-Infante
  • M. A. Pérez

Abstract

This work aimed to perform a detailed in vitro and in silico characterization of open-cell structures, which resemble trabecular bone, to elucidate osteoporosis failure mechanisms. Experimental and image-based computational methods were used to estimate Young′s modulus and porosities of different open-cell structures (Sawbones; Malmö, Sweden). Three different open-cell structures with different porosities were characterized. Additionally, some open-cell structures were scanned using a microcomputed tomography system (μCT) to non-destructively predict specimen Young′s modulus of the structures by developing voxel-based and tetrahedral finite element (FE) models. A 3D reconstruction and FE analyses were used. The experimental and computational results with different element types (linear and quadratic tetrahedrons and voxel-based meshes) were compared with Sawbones data (Sawbones; Malmö, Sweden) revealing important differences in Young′s modulus and porosities. The specimens with high and low volume fractions were best represented by linear and quadratic tetrahedrons, respectively. These results could be used to develop new osteoporosis-prevention strategies.

Suggested Citation

  • S. J. Ramos-Infante & M. A. Pérez, 2017. "and characterization of open-cell structures of trabecular bone," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 20(14), pages 1562-1570, October.
  • Handle: RePEc:taf:gcmbxx:v:20:y:2017:i:14:p:1562-1570
    DOI: 10.1080/10255842.2017.1390086
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2017.1390086
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2017.1390086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Verhulp & B. Van Rietbergen & R. Müller & R. Huiskes, 2008. "Micro-finite element simulation of trabecular-bone post-yield behaviour – effects of material model, element size and type," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 11(4), pages 389-395.
    2. Dominique P. Pioletti, 2010. "Biomechanics in bone tissue engineering," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 13(6), pages 837-846.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew P. Baumann & Xiutao Shi & Ryan K. Roeder & Glen L. Niebur, 2016. "The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 19(5), pages 465-473, April.
    2. Alexander Tsouknidas & Georgios Maliaris & Savvas Savvakis & Nikolaos Michailidis, 2015. "Anisotropic post-yield response of cancellous bone simulated by stress–strain curves of bulk equivalent structures," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 18(8), pages 839-846, June.
    3. A. Roshan-Ghias & A. Terrier & B.M. Jolles & D.P. Pioletti, 2014. "Translation of biomechanical concepts in bone tissue engineering: from animal study to revision knee arthroplasty," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(8), pages 845-852, June.
    4. M. K. Heljak & K. J. Kurzydlowski & W. Swieszkowski, 2017. "Computer aided design of architecture of degradable tissue engineering scaffolds," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 20(15), pages 1623-1632, November.
    5. Dominique P. Pioletti, 2013. "Integration of mechanotransduction concepts in bone tissue engineering," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(10), pages 1050-1055, October.
    6. Lars Ole Schwen & Uwe Wolfram, 2014. "Validation of composite finite elements efficiently simulating elasticity of trabecular bone," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(6), pages 652-660, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:20:y:2017:i:14:p:1562-1570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.