IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Robust Approximations for Pricing Asian Options and Volatility Swaps Under Stochastic Volatility

  • Martin Forde
  • Antoine Jacquier

We show that if the discounted Stock price process is a continuous martingale, then there is a simple relationship linking the variance of the terminal Stock price and the variance of its arithmetic average. We use this to establish a model-independent upper bound for the price of a continuously sampled fixed-strike arithmetic Asian call option, in the presence of non-zero time-dependent interest rates (Theorem 1.2). We also propose a model-independent lognormal moment-matching procedure for approximating the price of an Asian call, and we show how to apply these approximations under the Black-Scholes and Heston models (subsection 1.3). We then apply a similar analysis to a time-dependent Heston stochastic volatility model, and we show how to construct a time-dependent mean reversion and volatility-of-variance function, so as to be consistent with the observed variance swap curve and a pre-specified term structure for the variance of the integrated variance (Theorem 2.1). We characterize the small-time asymptotics of the first and second moments of the integrated variance (Proposition 2.2) and derive an approximation for the price of a volatility swap under the time-dependent Heston model ( Equation (52)), using the Brockhaus-Long approximation (Brockhaus, and Long, 2000). We also outline a bootstrapping procedure for calibrating a piecewise-linear mean reversion level and volatility-of-volatility function (Subsection 2.3.2).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Applied Mathematical Finance.

Volume (Year): 17 (2010)
Issue (Month): 3 ()
Pages: 241-259

in new window

Handle: RePEc:taf:apmtfi:v:17:y:2010:i:3:p:241-259
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:17:y:2010:i:3:p:241-259. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.