Author
Abstract
Accurate prediction of root zone soil moisture (RZSM) is critical for advancing hydrological modeling and water cycle characterization. To improve RZSM estimation in ungauged regions and elucidate the role of catchment attributes in RZSM dynamics in time and space, this study proposed a novel regionalization framework that integrates catchment attribute classification with surface soil moisture (SSM) similarity metrics. We investigate the viability of extrapolating RZSM data from gauged to ungauged catchments, with emphasis on the adaptability of the Soil Moisture Analytical Relationship (SMAR) model and the influence of catchment attributes on prediction performance. The results show that the calibrated SMAR model effectively simulates RZSM patterns, achieving a mean root mean square error (RMSE) of 0.040 cm³/cm³ for the validation periods. Additionally, the results reveal significant disparities between SSM and RZSM dynamics across the catchment, underscoring the pronounced influence of catchment attributes on SSM-RZSM coupling. Notably, parameter regionalization strategies combining catchment attribute-based site grouping, including topographic wetness index (TWI), soil depth, and leaf area index (LAI), produced more accurate RZSM predictions (mean RMSE = 0.081 cm³/cm³) than results from relying solely on SSM similarity (mean RMSE = 0.145 cm³/cm³). The superior performance of TWI-based groupings highlights topography’s essential role in modulating nonlinear SSM-RZSM relationships. These insights underscore the interdependence between soil moisture dynamics and catchment attributes in headwater catchments, illustrating the value of catchment physiographic features in constraining predictive uncertainty for RZSM in ungauged regions.
Suggested Citation
Hongxia Li & Yuting Zhao & Yongliang Qi & Yanjia Jiang & Elizabeth W. Boyer & Carlos R. Mello & Li Guo, 2025.
"Incorporating Catchment Attributes Grouping into Model Parameter Regionalization To Enhance Root Zone Soil Moisture Estimation,"
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(9), pages 4317-4334, July.
Handle:
RePEc:spr:waterr:v:39:y:2025:i:9:d:10.1007_s11269-025-04156-z
DOI: 10.1007/s11269-025-04156-z
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:39:y:2025:i:9:d:10.1007_s11269-025-04156-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.