IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i2d10.1007_s11269-023-03685-9.html
   My bibliography  Save this article

A Rule Based Water Quality Sensor Placement Method for Water Supply Systems Using Network Topology

Author

Listed:
  • M. Shahsavandi

    (Shahid Beheshti University)

  • J. Yazdi

    (Shahid Beheshti University)

  • M. Jalili-Ghazizadeh

    (Shahid Beheshti University)

  • A. Rashidi Mehrabadi

    (Shahid Beheshti University)

Abstract

Water supply systems are vital infrastructures that need to be monitored continuously for detection of any abnormal condition. Sensor placement is a key step that directly affects the success of a monitoring system. Therefore, the location and number of sensors should be carefully determined. To deal this problem, this paper presents a novel approach for efficiently determining the number and location of quality sensors based on the network topology and shortest path tree. The proposed method aims to maximize the number of monitored nodes with some simple rules and relies only on a hydraulic model. The results from tests on three benchmark water distribution networks with different sizes show that the proposed approach yields similar results to optimization tools while the proposed method is simpler and has less computational burden. Also, by increasing the size of the network and the number of sensors, the proposed method outperforms the optimization technique in some cases. Although the presented method has been focused on maximizing the number of monitored nodes, future works can extend it by addressing objectives beyond the number of monitored nodes.

Suggested Citation

  • M. Shahsavandi & J. Yazdi & M. Jalili-Ghazizadeh & A. Rashidi Mehrabadi, 2024. "A Rule Based Water Quality Sensor Placement Method for Water Supply Systems Using Network Topology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(2), pages 569-586, January.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:2:d:10.1007_s11269-023-03685-9
    DOI: 10.1007/s11269-023-03685-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03685-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03685-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tianwei Mu & Manhong Huang & Shi Tang & Rui Zhang & Gang Chen & Baiyi Jiang, 2022. "Sensor Partitioning Placements via Random Walk and Water Quality and Leakage Detection Models within Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5297-5311, October.
    2. Symeon Christodoulou & Anastasis Gagatsis & Savvas Xanthos & Sofia Kranioti & Agathoklis Agathokleous & Michalis Fragiadakis, 2013. "Entropy-Based Sensor Placement Optimization for Waterloss Detection in Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4443-4468, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farhad Salimian & Reza Ghiassi, 2025. "A Hybrid Method for Designing Sustainable River Monitoring Networks Using Fuzzy Logic Site Selection and Genetic Algorithm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 227-243, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Brentan & Silvia Carpitella & Daniel Barros & Gustavo Meirelles & Antonella Certa & Joaquín Izquierdo, 2021. "Water Quality Sensor Placement: A Multi-Objective and Multi-Criteria Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 225-241, January.
    2. David B. Steffelbauer & Daniela Fuchs-Hanusch, 2016. "Efficient Sensor Placement for Leak Localization Considering Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5517-5533, November.
    3. Oreste Fecarotta & Costanza Aricò & Armando Carravetta & Riccardo Martino & Helena Ramos, 2015. "Hydropower Potential in Water Distribution Networks: Pressure Control by PATs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 699-714, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:2:d:10.1007_s11269-023-03685-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.