IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i6d10.1007_s11269-021-02827-1.html
   My bibliography  Save this article

An Assimilation Simulation Approach for the Suspended Sediment Concentration in Inland Lakes Using a Hybrid Perturbation Generation Method

Author

Listed:
  • Fei Guo

    (Nanjing Normal University
    Key Laboratory of Virtual Geographic Environment Nanjing Normal University, Ministry of Education
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application)

  • Jingjia Zhang

    (Nanjing Normal University
    Key Laboratory of Virtual Geographic Environment Nanjing Normal University, Ministry of Education
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application)

  • A-xing Zhu

    (University of Wisconsin Madison)

  • Zhuo Zhang

    (Nanjing Normal University
    Key Laboratory of Virtual Geographic Environment Nanjing Normal University, Ministry of Education
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application)

  • Hong Zhang

    (Nanjing Normal University
    Key Laboratory of Virtual Geographic Environment Nanjing Normal University, Ministry of Education
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application)

Abstract

Suspended sediments, one of the most important factors affecting the water environments of inland lakes, are closely related to the migration and interaction of various pollutants. Existing studies show that the suspended sediment concentration can be accurately predicted based on assimilation methods coupled with hydrodynamic models. However, in the hydrological assimilation simulation process, the existing perturbation generation methods consider the perturbation error to follow a random Gaussian distribution, which does not consider the spatial variation characteristics of errors. Thus, in this paper, we proposed a new method that generates a hybrid perturbation field for the assimilation simulation instead of using random error. The proposed approach was validated through assimilation simulations of the suspended sediment concentration of Taihu Lake, China, and five assimilation experiments were conducted. The proposed method was compared with the existing methods for generating the perturbation field. After three days and 72 time steps of assimilation simulation based on the hybrid perturbation field, the proposed assimilation method provided results that were more consistent with the buoy-measured data. These findings demonstrate that the proposed method for generating a hybrid perturbation field has a higher simulation accuracy than other methods and is therefore effective and provides a new idea for the assimilation simulation of suspended sediment concentrations in inland lakes.

Suggested Citation

  • Fei Guo & Jingjia Zhang & A-xing Zhu & Zhuo Zhang & Hong Zhang, 2021. "An Assimilation Simulation Approach for the Suspended Sediment Concentration in Inland Lakes Using a Hybrid Perturbation Generation Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 2007-2022, April.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:6:d:10.1007_s11269-021-02827-1
    DOI: 10.1007/s11269-021-02827-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02827-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02827-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinglu Wu & Haiao Zeng & Hong Yu & Long Ma & Longsheng Xu & Boqiang Qin, 2012. "Water and Sediment Quality in Lakes along the Middle and Lower Reaches of the Yangtze River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3601-3618, September.
    2. Kouakou Kouassı & Kouassi Kouame & Kouakou Konan & Martin Sanchez Angulo & Moussa Deme & N’Diaye Meledje, 2013. "Two-Dimensional Numerical Simulation of the Hydro-Sedimentary Phenomena in Lake Taabo, Côte d’Ivoire," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4379-4394, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Masoud Soleimanpour & Hamid Gholami & Omid Rahmati & Samad Shadfar, 2023. "Fingerprinting Sources of Fine-grained Sediment Deposited in a Riverine System by GLUE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 899-913, January.
    2. Yi Tang & Yang Pan & Lei Zhang & Hongchen Yi & Yiping Gu & Weihao Sun, 2023. "Efficient Monitoring of Total Suspended Matter in Urban Water Based on UAV Multi-spectral Images," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2143-2160, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongwu Tang & Hao Cao & Saiyu Yuan & Yang Xiao & Chenyu Jiang & Carlo Gualtieri, 2020. "A Numerical Study of Hydrodynamic Processes and Flood Mitigation in a Large River-lake System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3739-3760, September.
    2. Yovana Todorova & Stilyana Lincheva & Ivaylo Yotinov & Yana Topalova, 2016. "Contamination and Ecological Risk Assessment of Long-Term Polluted Sediments with Heavy Metals in Small Hydropower Cascade," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4171-4184, September.
    3. Yuanmei Jiao & Zhiqin Zha & Qiue Xu, 2022. "A Modified Location-Weighted Landscape Index to Evaluate Nutrient Retention in Agricultural Wetlands: A Case Study of the Honghe Hani Rice Terraces World Heritage Site," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
    4. Hriday Kalita, 2016. "A New Total Variation Diminishing Predictor Corrector Approach for Two-Dimensional Shallow Water Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1481-1497, March.
    5. N. Adam & S. Erpicum & P. Archambeau & M. Pirotton & B. Dewals, 2015. "Stochastic Modelling of Reservoir Sedimentation in a Semi-Arid Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 785-800, February.
    6. Lilian Ding & Qiyao Li & Jianjun Tang & Jiangfei Wang & Xin Chen, 2019. "Linking Land Use Metrics Measured in Aquatic–Terrestrial Interfaces to Water Quality of Reservoir-Based Water Sources in Eastern China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:6:d:10.1007_s11269-021-02827-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.