IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i12d10.1007_s11269-020-02628-y.html
   My bibliography  Save this article

A Numerical Study of Hydrodynamic Processes and Flood Mitigation in a Large River-lake System

Author

Listed:
  • Hongwu Tang

    (Hohai University)

  • Hao Cao

    (Hohai University)

  • Saiyu Yuan

    (Hohai University)

  • Yang Xiao

    (Hohai University)

  • Chenyu Jiang

    (Hohai University)

  • Carlo Gualtieri

    (University of Naples Federico II)

Abstract

Floods out of all other water problems cause very large damages in China. Previous flood management plans mainly focused on a single river by controlling its water level and conveyance capacity, while research on mitigation solutions to flooding issues in river-lake systems is scarce. This study considers the Huai River - Lake Hongze system, which is one of the largest river-lake systems in China. Very large damages associated with small floods are frequently observed in this river-lake system, although a series of flood management measures have been implemented in the Huai River Basin since the middle of the last century. An unstructured-grid finite-volume numerical model was applied to simulate hydrodynamic processes in this system, which is characterized by discrepant spatial scales between these two types of water bodies. It is found that the lake affects the upstream river flooding, but lowering the lake level would have limited effects that would be rapidly impaired by the sharp meander bend connecting the river and the lake. The artificial cutoff of this intensively-embanked bend has great potential in reducing the river stage and flood damages, as the construction of a diversion channel would shorten the flow path and increase the hydraulic gradient. This study extends the current knowledge about the hydrodynamics of river-lake systems and is beneficial to flood mitigation strategies for similar systems.

Suggested Citation

  • Hongwu Tang & Hao Cao & Saiyu Yuan & Yang Xiao & Chenyu Jiang & Carlo Gualtieri, 2020. "A Numerical Study of Hydrodynamic Processes and Flood Mitigation in a Large River-lake System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3739-3760, September.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:12:d:10.1007_s11269-020-02628-y
    DOI: 10.1007/s11269-020-02628-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02628-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02628-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yerubandi Rao & Jun Zhao, 2010. "Numerical simulation of the influence of a Red River flood on circulation and contaminant dispersion in Lake Winnipeg," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(1), pages 51-62, October.
    2. Yue Zhao & Zaiwu Gong & Wenhao Wang & Kai Luo, 2014. "The comprehensive risk evaluation on rainstorm and flood disaster losses in China mainland from 2004 to 2009: based on the triangular gray correlation theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1001-1016, March.
    3. Xinyu Wan & Lijuan Hua & Shutan Yang & Hoshin V. Gupta & Ping’an Zhong, 2018. "Evaluating the Impacts of a Large-Scale Multi-Reservoir System on Flooding: Case of the Huai River in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1013-1033, February.
    4. Jinglu Wu & Haiao Zeng & Hong Yu & Long Ma & Longsheng Xu & Boqiang Qin, 2012. "Water and Sediment Quality in Lakes along the Middle and Lower Reaches of the Yangtze River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3601-3618, September.
    5. Yongyong Zhang & Jun Xia & Tao Liang & Quanxi Shao, 2010. "Impact of Water Projects on River Flow Regimes and Water Quality in Huai River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 889-908, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bojun Liu & Jun Xia & Feilin Zhu & Jin Quan & Hao Wang, 2021. "Response of Hydrodynamics and Water-quality Conditions to Climate Change in a Shallow Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4961-4976, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    2. Peng Shi & Xinxin Ma & Yuanbing Hou & Qiongfang Li & Zhicai Zhang & Simin Qu & Chao Chen & Tao Cai & Xiuqin Fang, 2013. "Effects of Land-Use and Climate Change on Hydrological Processes in the Upstream of Huai River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1263-1278, March.
    3. Lan Feng & Pan Hu & Haisen Wang & Ming-ming Chen & Jiangang Han, 2022. "Improving City Water Quality through Pollution Reduction with Urban Floodgate Infrastructure and Design Solutions: A Case Study in Wuxi, China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    4. Pei Zhao & Xiangyu Tang & Jialiang Tang & Chao Wang, 2013. "Assessing Water Quality of Three Gorges Reservoir, China, Over a Five-Year Period From 2006 to 2011," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4545-4558, October.
    5. C. Zhao & C. Sun & J. Xia & X. Hao & G. Li & K. Rebensburg & C. Liu, 2010. "An Impact Assessment Method of Dam/Sluice on Instream Ecosystem and its Application to the Bengbu Sluice of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4551-4565, December.
    6. Yinshan Xu & Yubin Chen & Yufeng Ren & Zhengyang Tang & Xu Yang & Yu Zhang, 2023. "Attribution of Streamflow Changes Considering Spatial Contributions and Driver Interactions Based on Hydrological Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 1859-1877, March.
    7. Manlin Wang & Yu Zhang & Yan Lu & Li Gao & Leizhi Wang, 2023. "Attribution Analysis of Streamflow Changes Based on Large-scale Hydrological Modeling with Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 713-730, January.
    8. Yue Wang & Qiang Zhang & Vijay P. Singh, 2016. "Spatiotemporal patterns of precipitation regimes in the Huai River basin, China, and possible relations with ENSO events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 2167-2185, July.
    9. Yovana Todorova & Stilyana Lincheva & Ivaylo Yotinov & Yana Topalova, 2016. "Contamination and Ecological Risk Assessment of Long-Term Polluted Sediments with Heavy Metals in Small Hydropower Cascade," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4171-4184, September.
    10. Yi-han Tang & Jie-feng Wu & Pei-yi Li & Li-juan Zhang & Xiao-hong Chen & Kai-rong Lin, 2019. "Quantifying Flood Frequency Modification Caused by Multi-Reservoir Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4451-4470, October.
    11. Yuanmei Jiao & Zhiqin Zha & Qiue Xu, 2022. "A Modified Location-Weighted Landscape Index to Evaluate Nutrient Retention in Agricultural Wetlands: A Case Study of the Honghe Hani Rice Terraces World Heritage Site," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
    12. Jiamei Zhang & Guijian Liu & Zijiao Yuan & Ruwei Wang, 2014. "Levels and distributions of polycyclic aromatic hydrocarbons (PAHs) in middle reach of Huaihe River, China: anthropogenic influences and ecological risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 705-716, November.
    13. Kedong Yin & Ya Zhang & Xuemei Li, 2017. "Research on Storm-Tide Disaster Losses in China Using a New Grey Relational Analysis Model with the Dispersion of Panel Data," IJERPH, MDPI, vol. 14(11), pages 1-18, November.
    14. Xinyu Wan & Qingyan Yang & Peng Jiang & Ping’an Zhong, 2019. "A Hybrid Model for Real-Time Probabilistic Flood Forecasting Using Elman Neural Network with Heterogeneity of Error Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 4027-4050, September.
    15. Han Wu & Junwu Wang, 2021. "A Method for Prediction of Waterlogging Economic Losses in a Subway Station Project," Mathematics, MDPI, vol. 9(12), pages 1-23, June.
    16. Yi Wu & Rong Dai & Yongfeng Xu & Jiangang Han & Pingping Li, 2018. "Statistical Assessment of Water Quality Issues in Hongze Lake, China, Related to the Operation of a Water Diversion Project," Sustainability, MDPI, vol. 10(6), pages 1-12, June.
    17. Hongyan Ren & Xia Wan & Fei Yang & Xiaoming Shi & Jianwei Xu & Dafang Zhuang & Gonghuan Yang, 2014. "Association between Changing Mortality of Digestive Tract Cancers and Water Pollution: A Case Study in the Huai River Basin, China," IJERPH, MDPI, vol. 12(1), pages 1-13, December.
    18. Fei Guo & Jingjia Zhang & A-xing Zhu & Zhuo Zhang & Hong Zhang, 2021. "An Assimilation Simulation Approach for the Suspended Sediment Concentration in Inland Lakes Using a Hybrid Perturbation Generation Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 2007-2022, April.
    19. Rongrong Li & Lihua Xiong & Xini Zha & Bin Xiong & Han Liu & Jie Chen & Ling Zeng & Wenbin Li, 2022. "Impacts of climate and reservoirs on the downstream design flood hydrograph: a case study of Yichang Station," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1803-1831, September.
    20. Fan Yang & Suwen Xiong & Jiangang Ou & Ziyu Zhao & Ting Lei, 2022. "Human Settlement Resilience Zoning and Optimizing Strategies for River-Network Cities under Flood Risk Management Objectives: Taking Yueyang City as an Example," Sustainability, MDPI, vol. 14(15), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:12:d:10.1007_s11269-020-02628-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.