IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i8d10.1007_s11269-020-02568-7.html
   My bibliography  Save this article

Optimal Design of Groundwater Monitoring Network Using the Combined Election-Kriging Method

Author

Listed:
  • Mohadeseh Kavusi

    (University of Birjand)

  • Abbas Khashei Siuki

    (University of Birjand)

  • Mahdi Dastourani

    (University of Birjand)

Abstract

Groundwater monitoring requires a great deal of cost and time that optimizing the quantitative groundwater monitoring network with selecting the optimal number of sampling wells and determining their optimal location for reducing the cost and time of quantitative groundwater assessment are necessary. The data from 110 observation wells of Neyshabur plain in Iran range from the year 1986 to 2016 were studied. The combined Election-Kriging method was used to analyze these data, and the Pareto chart was plotted to determine the optimal number and location in two scenarios. The first scenario was to determine the optimal wells location among the existing wells and the second scenario was to determine the optimal wells location for monitoring groundwater levels throughout the plain. To limit the search space, the maximum and minimum number of monitoring network wells were selected 30 and 85 respectively. Based on the results, the selected method accurately provided the appropriate location of wells, so that in the first scenario, the RMSE values ​​for the number of wells were in the range of 0.71 to 2.34 m. which are acceptable. In the second scenario, the RMSE values ​​of between 1.04 and 2.89 m were obtained, which are appropriate values ​​according to the objective of the problem. Also, the distribution of the wells selected in the area is also uniform in most numbers according to the second scenario, which indicates the good accuracy of the method.

Suggested Citation

  • Mohadeseh Kavusi & Abbas Khashei Siuki & Mahdi Dastourani, 2020. "Optimal Design of Groundwater Monitoring Network Using the Combined Election-Kriging Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2503-2516, June.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:8:d:10.1007_s11269-020-02568-7
    DOI: 10.1007/s11269-020-02568-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02568-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02568-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haijiao Yu & Xiaohu Wen & Qi Feng & Ravinesh C. Deo & Jianhua Si & Min Wu, 2018. "Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 301-323, January.
    2. Georgios N. Kouziokas & Alexander Chatzigeorgiou & Konstantinos Perakis, 2018. "Multilayer Feed Forward Models in Groundwater Level Forecasting Using Meteorological Data in Public Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5041-5052, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hedi Mahmoudpour & Somaye Janatrostami & Afshin Ashrafzadeh, 2023. "Optimal Design of Groundwater Quality Monitoring Network Using Aquifer Vulnerability Map," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 797-818, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeideh Samani & Meysam Vadiati & Farahnaz Azizi & Efat Zamani & Ozgur Kisi, 2022. "Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3627-3647, August.
    2. Kusum Pandey & Shiv Kumar & Anurag Malik & Alban Kuriqi, 2020. "Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    3. Dilip Kumar Roy & Sujit Kumar Biswas & Kowshik Kumar Saha & Khandakar Faisal Ibn Murad, 2021. "Groundwater Level Forecast Via a Discrete Space-State Modelling Approach as a Surrogate to Complex Groundwater Simulation Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1653-1672, April.
    4. Ao, Chang & Zeng, Wenzhi & Wu, Lifeng & Qian, Long & Srivastava, Amit Kumar & Gaiser, Thomas, 2021. "Time-delayed machine learning models for estimating groundwater depth in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Afshin Khoshand, 2021. "Application of artificial intelligence in groundwater ecosystem protection: a case study of Semnan/Sorkheh plain, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16617-16631, November.
    6. Vassilios A. Tsihrintzis & Harris Vangelis, 2018. "Water Resources and Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4813-4817, December.
    7. Saeed Mozaffari & Saman Javadi & Hamid Kardan Moghaddam & Timothy O. Randhir, 2022. "Forecasting Groundwater Levels using a Hybrid of Support Vector Regression and Particle Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1955-1972, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:8:d:10.1007_s11269-020-02568-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.