IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i9d10.1007_s11269-018-1974-9.html
   My bibliography  Save this article

Performance of Different Surface Incoming Solar Radiation Models and Their Impacts on Reference Evapotranspiration

Author

Listed:
  • Ali Mokhtari

    (Iranian Space Agency)

  • Hamideh Noory

    (University of Tehran)

  • Majid Vazifedoust

    (University of Guilan)

Abstract

Reference evapotranspiration (ET0) from FAO-Penman-Monteith equation is highly sensitive to the surface incoming solar radiation (SISR) and therefore accurate estimate of this parameter would result in more accurate estimation of ET0. In this study, the accuracy of three main approaches for SISR estimation including empirical models (Angstrom and Hargreaves-Samani), physically-based data assimilation models (Global Land Data Assimilation System-Noah, GLDAS/Noah, and National Centers of Environmental Predictions/National Center for Atmospheric Research, NCEP/NCAR), and a satellite observation model (Satellite Application Facility on Climate Monitoring, CM-SAF) were evaluated using ground-based measurements from 2012 to 2015. Then SISR outputs from introduced approaches were implemented in FAO-Penman-Monteith equation for ET0 estimation on daily and monthly basis. The Angstrom calibrated model was the most accurate model with a coefficient of determination (R2) of 0.9 and standard error of estimate (SEE) of 2.58 MJ. m−2. d−1, and GLDAS/Noah, Hargreaves-Samani, NCEP/NCAR, and CM-SAF, had lower accuracy, respectively. However, the lack of the meteorological data and required empirical coefficients are the main limitations of applying the empirical models, however, satellite-based approaches are more practical for operational purposes. The results indicated that, in spite of slight overestimation in warm months, GLDAS/Noah model had better performance with R2=0.87 and SEE = 3.5 MJ. m−2. d−1 in case of lack of meteorological data. The accuracy of ET0 derived from FAO-Penman-Monteith equation was directly depended on the accuracy of SISR estimation. The ET0 estimation error was related to SISR estimation error with a fourth-degree function and had a linear relationship with SISR error at daily and monthly scales, respectively.

Suggested Citation

  • Ali Mokhtari & Hamideh Noory & Majid Vazifedoust, 2018. "Performance of Different Surface Incoming Solar Radiation Models and Their Impacts on Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3053-3070, July.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:9:d:10.1007_s11269-018-1974-9
    DOI: 10.1007/s11269-018-1974-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1974-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1974-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C.-Y. Xu & V. Singh, 2002. "Cross Comparison of Empirical Equations for Calculating Potential Evapotranspiration with Data from Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(3), pages 197-219, June.
    2. Alireza Sharifi & Yagob Dinpashoh, 2014. "Sensitivity Analysis of the Penman-Monteith reference Crop Evapotranspiration to Climatic Variables in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5465-5476, December.
    3. Goyal, R. K., 2004. "Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India)," Agricultural Water Management, Elsevier, vol. 69(1), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    2. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    3. Santos, Jannaylton Everton Oliveira & Cunha, Fernando França da & Filgueiras, Roberto & Silva, Gustavo Henrique da & Castro Teixeira, Antônio Heriberto de & Santos Silva, Francisco Charles dos & Sediy, 2020. "Performance of SAFER evapotranspiration using missing meteorological data," Agricultural Water Management, Elsevier, vol. 233(C).
    4. Nouri, Milad & Homaee, Mehdi, 2022. "Reference crop evapotranspiration for data-sparse regions using reanalysis products," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Paredes, P. & Pereira, L.S., 2019. "Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on solar radiation," Agricultural Water Management, Elsevier, vol. 215(C), pages 86-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhao & Zongxue Xu & Vijay P. Singh & Depeng Zuo & Mo Li, 2016. "Sensitivity of Potential Evapotranspiration to Climate and Vegetation in a Water-Limited Basin at the Northern Edge of Tibetan Plateau," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4667-4680, October.
    2. Liang, Liyin & Peng, Shaolin & Sun, Junmei & Chen, Leiyi & Cao, Yuexiu, 2010. "Estimation of annual potential evapotranspiration at regional scale based on the effect of moisture on soil respiration," Ecological Modelling, Elsevier, vol. 221(22), pages 2668-2674.
    3. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    4. Milad Nouri & Mehdi Homaee & Mohammad Bannayan, 2017. "Quantitative Trend, Sensitivity and Contribution Analyses of Reference Evapotranspiration in some Arid Environments under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2207-2224, May.
    5. Slavisa Trajkovic & Srdjan Kolakovic, 2009. "Evaluation of Reference Evapotranspiration Equations Under Humid Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3057-3067, November.
    6. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    7. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
    8. Li, Zhibin & Feng, Bianbian & Wang, Wei & Yang, Xi & Wu, Pute & Zhuo, La, 2022. "Spatial and temporal sensitivity of water footprint assessment in crop production to modelling inputs and parameters," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
    10. Mokhtari, Ali & Noory, Hamideh & Vazifedoust, Majid & Palouj, Mojtaba & Bakhtiari, Atousa & Barikani, Elham & Zabihi Afrooz, Ramezan Ali & Fereydooni, Fatemeh & Sadeghi Naeni, Ali & Pourshakouri, Farr, 2019. "Evaluation of single crop coefficient curves derived from Landsat satellite images for major crops in Iran," Agricultural Water Management, Elsevier, vol. 218(C), pages 234-249.
    11. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    12. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    13. Yang, Xiaolin & Gao, Wangsheng & Shi, Quanhong & Chen, Fu & Chu, Qingquan, 2013. "Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region," Agricultural Water Management, Elsevier, vol. 124(C), pages 20-27.
    14. Garcia-Prats, A. & Carricondo-Anton, J.M. & Jiménez-Bello, M.A. & Manzano Juárez, J. & López-Pérez, E. & Pulido-Velazquez, M., 2023. "Dynamic procedure for daily PM56 ETo mapping conducive to site-specific irrigation recommendations in areas covered by agricultural weather networks," Agricultural Water Management, Elsevier, vol. 287(C).
    15. Serdar Göncü & Erdem Albek, 2010. "Modeling Climate Change Effects on Streams and Reservoirs with HSPF," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 707-726, March.
    16. Zhang, Lei & Traore, Seydou & Cui, Yuanlai & Luo, Yufeng & Zhu, Ge & Liu, Bo & Fipps, Guy & Karthikeyan, R. & Singh, Vijay, 2019. "Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques," Agricultural Water Management, Elsevier, vol. 213(C), pages 499-511.
    17. Seema Chauhan & R. Shrivastava, 2009. "Performance Evaluation of Reference Evapotranspiration Estimation Using Climate Based Methods and Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 825-837, March.
    18. Martinez-Cob, A. & Tejero-Juste, M., 2004. "A wind-based qualitative calibration of the Hargreaves ET0 estimation equation in semiarid regions," Agricultural Water Management, Elsevier, vol. 64(3), pages 251-264, February.
    19. Mohammad Valipour, 2014. "Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4237-4255, September.
    20. Changchun Xu & Xicheng Zhang & Jinxia Zhang & Yapeng Chen & Teshome L. Yami & Yang Hong, 2021. "Estimation of Crop Water Requirement Based on Planting Structure Extraction from Multi-Temporal MODIS EVI," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2231-2247, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:9:d:10.1007_s11269-018-1974-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.