IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i8p2619-2636.html
   My bibliography  Save this article

Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM

Author

Listed:
  • J. Teng
  • J. Vaze
  • D. Dutta
  • S. Marvanek

Abstract

Rapid and accurate inundation modelling in large floodplains is critical for emergency response and environmental management. This paper describes the development and implementation of a floodplain inundation model that can be used for rapid assessment of inundation in very large floodplains. The model uses high resolution DEM (such as LiDAR DEM) to derive floodplain storages and connectivity between them at different river stages. We tested the performance of the model across several large floodplains in southeast Australia for estimating floodplain inundation extent, volume, and water depth for a few recent flood events. The results are in good agreement with those obtained from high resolution satellite imageries and MIKE 21 two-dimensional hydrodynamic model. The model performed particularly well in the reaches that have confined channels with above 85 % agreement with the flood maps derived from Landsat TM imagery in cell-to-cell comparison. While the model did not performance as well in the flat and complex floodplains, the overall level of agreement of the modelled inundation maps with the satellite flood maps was still satisfactory (60–75 %). The key advantage of this model is demonstrated by its capability to simulate inundation in large floodplains (over 2000 km 2 ) at a very high resolution of 5-m with more than 81 million cells at a reasonably low computational cost. The model is suitable for practical floodplain inundation simulation and scenario modelling under current and future climate conditions. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • J. Teng & J. Vaze & D. Dutta & S. Marvanek, 2015. "Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2619-2636, June.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:8:p:2619-2636
    DOI: 10.1007/s11269-015-0960-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-0960-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-0960-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Md. Bhuiyan & Dushmanta Dutta, 2012. "Analysis of flood vulnerability and assessment of the impacts in coastal zones of Bangladesh due to potential sea-level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 729-743, March.
    2. Dushmanta Dutta & Wendy Welsh & Jai Vaze & Shaun Kim & David Nicholls, 2012. "A Comparative Evaluation of Short-Term Streamflow Forecasting Using Time Series Analysis and Rainfall-Runoff Models in eWater Source," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4397-4415, December.
    3. George Tsakiris & Vasilis Bellos, 2014. "A Numerical Model for Two-Dimensional Flood Routing in Complex Terrains," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1277-1291, March.
    4. Powell, S.J. & Letcher, R.A. & Croke, B.F.W., 2008. "Modelling floodplain inundation for environmental flows: Gwydir wetlands, Australia," Ecological Modelling, Elsevier, vol. 211(3), pages 350-362.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prachi Pratyasha Jena & Banamali Panigrahi & Chandranath Chatterjee, 2016. "Assessment of Cartosat-1 DEM for Modeling Floods in Data Scarce Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1293-1309, February.
    2. Wenchao Qi & Chao Ma & Hongshi Xu & Zifan Chen & Kai Zhao & Hao Han, 2021. "A review on applications of urban flood models in flood mitigation strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 31-62, August.
    3. Maity, Somnath & Sundar, S., 2022. "A coupled model for macroscopic behavior of crowd in flood induced evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    4. Asghar Azizian, 2019. "The Effects of Topographic Map Scale and Costs of Land Surveying on Geometric Model and Flood Inundation Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1315-1333, March.
    5. John Reimer & Chin Wu, 2016. "Development and Application of a Nowcast and Forecast System Tool for Planning and Managing a River Chain of Lakes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1375-1393, March.
    6. Heather McGrath & Jean-François Bourgon & Jean-Samuel Proulx-Bourque & Miroslav Nastev & Ahmad Abo El Ezz, 2018. "A comparison of simplified conceptual models for rapid web-based flood inundation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 905-920, September.
    7. J. Teng & J. Vaze & S. Kim & D. Dutta & A. J. Jakeman & B. F. W. Croke, 2019. "Enhancing the Capability of a Simple, Computationally Efficient, Conceptual Flood Inundation Model in Hydrologically Complex Terrain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 831-845, January.
    8. Kay Khaing Kyaw & Federica Bonaiuti & Huimin Wang & Stefano Bagli & Paolo Mazzoli & Pier Paolo Alberoni & Simone Persiano & Attilio Castellarin, 2024. "Fast-Processing DEM-Based Urban and Rural Inundation Scenarios from Point-Source Flood Volumes," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    9. G. Papaioannou & A. Loukas & L. Vasiliades & G. T. Aronica, 2016. "Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 117-132, October.
    10. John R. Reimer & Chin H. Wu, 2016. "Development and Application of a Nowcast and Forecast System Tool for Planning and Managing a River Chain of Lakes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1375-1393, March.
    11. Zhouyayan Li & Jerry Mount & Ibrahim Demir, 2022. "Accounting for uncertainty in real-time flood inundation mapping using HAND model: Iowa case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 977-1004, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    2. Xiaorui Zhang & Zhenbo Wang & Jing Lin, 2015. "GIS Based Measurement and Regulatory Zoning of Urban Ecological Vulnerability," Sustainability, MDPI, vol. 7(8), pages 1-19, July.
    3. Catherine Ticehurst & Dushmanta Dutta & Fazlul Karim & Cuan Petheram & Juan Guerschman, 2015. "Improving the accuracy of daily MODIS OWL flood inundation mapping using hydrodynamic modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 803-820, September.
    4. Chen, Bin & Chen, Lifan & Lu, Ming & Xu, Bing, 2017. "Wetland mapping by fusing fine spatial and hyperspectral resolution images," Ecological Modelling, Elsevier, vol. 353(C), pages 95-106.
    5. Hriday Mani Kalita, 2020. "A Numerical Model for 1D Bed Morphology Calculations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4975-4989, December.
    6. Yang, Wei, 2011. "A multi-objective optimization approach to allocate environmental flows to the artificially restored wetlands of China's Yellow River Delta," Ecological Modelling, Elsevier, vol. 222(2), pages 261-267.
    7. Mahdi Soleimani Motlagh & Hoda Ghasemieh & Ali Talebi & Khodayar Abdollahi, 2017. "Identification and Analysis of Drought Propagation of Groundwater During Past and Future Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 109-125, January.
    8. Vasilis Bellos & Ino Papageorgaki & Ioannis Kourtis & Harris Vangelis & Ioannis Kalogiros & George Tsakiris, 2020. "Reconstruction of a flash flood event using a 2D hydrodynamic model under spatial and temporal variability of storm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 711-726, April.
    9. Chen, H. & Zhao, Y.W., 2011. "Evaluating the environmental flows of China's Wolonghu wetland and land use changes using a hydrological model, a water balance model, and remote sensing," Ecological Modelling, Elsevier, vol. 222(2), pages 253-260.
    10. Mostafa Dastorani & Mohammad Mirzavand & Mohammad Taghi Dastorani & Seyyed Javad Sadatinejad, 2016. "Comparative study among different time series models applied to monthly rainfall forecasting in semi-arid climate condition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1811-1827, April.
    11. Md. Mashrur Rahman & Uttama Barua & Farzana Khatun & Ishrat Islam & Rezwana Rafiq, 2018. "Participatory Vulnerability Reduction (PVR): an urban community-based approach for earthquake management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1479-1505, September.
    12. Ralph Mac Nally & Gregory F. B. Horrocks & Hania Lada, 2017. "Anuran responses to pressures from high-amplitude drought–flood–drought sequences under climate change," Climatic Change, Springer, vol. 141(2), pages 243-257, March.
    13. Hakan Tongal & Martijn J. Booij, 2016. "A Comparison of Nonlinear Stochastic Self-Exciting Threshold Autoregressive and Chaotic k-Nearest Neighbour Models in Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1515-1531, March.
    14. Thiede, Brian C. & Chen, Joyce & Mueller, Valerie & Jia, Yuanyuan & Hultquist, Carolynne, 2020. "It’s Raining Babies? Flooding and Fertility Choices in Bangladesh," SocArXiv cz482, Center for Open Science.
    15. José Pinho & Rui Ferreira & Luís Vieira & Dirk Schwanenberg, 2015. "Comparison Between Two Hydrodynamic Models for Flooding Simulations at River Lima Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 431-444, January.
    16. Mohammed Seyam & Faridah Othman, 2014. "The Influence of Accurate Lag Time Estimation on the Performance of Stream Flow Data-driven Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2583-2597, July.
    17. Jie Chen & François Brissette, 2015. "Combining Stochastic Weather Generation and Ensemble Weather Forecasts for Short-Term Streamflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3329-3342, July.
    18. Hriday Mani Kalita, 2016. "A New Total Variation Diminishing Predictor Corrector Approach for Two-Dimensional Shallow Water Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1481-1497, March.
    19. Hriday Kalita, 2016. "A New Total Variation Diminishing Predictor Corrector Approach for Two-Dimensional Shallow Water Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1481-1497, March.
    20. Vasilis Bellos & George Tsakiris, 2015. "Comparing Various Methods of Building Representation for 2D Flood Modelling In Built-Up Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 379-397, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:8:p:2619-2636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.