IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i12p3051-3063.html
   My bibliography  Save this article

Performance Evaluation Model for Multipurpose Multireservoir System Operation

Author

Listed:
  • Geeta Joshi
  • Kapil Gupta

Abstract

This paper describes the development of a performance evaluation based model for the operation of multipurpose multireservoir in a river basin system. The methodology developed in the present study has been evolved for (1) allocation of releases for multi-purpose from each reservoir, (2) fair allocation of mandatory flow releases in the river, and (3) the assessment of the system capability for multipurpose operation. The System Performance Index (SYSPI) has been introduced as a measure of the overall performance of the system. SYSPI is defined as a function of the performance indicator indices which are developed to measure each of the objectives of the multireservoir system, namely, reliability of water supply, hydropower production, revenue income, and spill prevention. The SYSPI is maximized using a search algorithm which is linked to the simulation module. The application of the developed methodology is demonstrated for the reservoirs on the Narmada River System, India. The application of the methodology should enable increasing the hydropower generation within the existing framework. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Geeta Joshi & Kapil Gupta, 2010. "Performance Evaluation Model for Multipurpose Multireservoir System Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3051-3063, September.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:12:p:3051-3063
    DOI: 10.1007/s11269-010-9594-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9594-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9594-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Babel & A. Gupta & D. Nayak, 2005. "A Model for Optimal Allocation of Water to Competing Demands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 693-712, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leakey, Roger & Kranjac-Berisavljevic, Gordana & Caron, Patrick & Craufurd, Peter & Martin, Adrienne M. & McDonald, Andy & Abedini, Walter & Afiff, Suraya & Bakurin, Ndey & Bass, Steve & Hilbeck, Ange, 2009. "Impacts of AKST on development and sustainability goals," Book Chapters,, International Water Management Institute.
    2. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    3. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    4. R. Roozbahani & S. Schreider & B. Abbasi, 2013. "Economic Sharing of Basin Water Resources between Competing Stakeholders," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2965-2988, June.
    5. Xike Guan & Zengchuan Dong & Yun Luo & Dunyu Zhong, 2021. "Multi-Objective Optimal Allocation of River Basin Water Resources under Full Probability Scenarios Considering Wet–Dry Encounters: A Case Study of Yellow River Basin," IJERPH, MDPI, vol. 18(21), pages 1-19, November.
    6. Ali Sardar Shahraki & Mohim Tash & Tommaso Caloiero & Ommolbanin Bazrafshan, 2024. "Optimal Allocation of Water Resources Using Agro-Economic Development and Colony Optimization Algorithm," Sustainability, MDPI, vol. 16(13), pages 1-18, July.
    7. Mohammad Karamouz & Sara Nazif & Mohammad Sherafat & Zahra Zahmatkesh, 2014. "Development of an Optimal Reservoir Operation Scheme Using Extended Evolutionary Computing Algorithms Based on Conflict Resolution Approach: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3539-3554, September.
    8. Jianan Qin & Xiang Fu & Shaoming Peng & Yuni Xu & Jie Huang & Sha Huang, 2019. "Asymmetric Bargaining Model for Water Resource Allocation over Transboundary Rivers," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    9. Javier Alarcón & Alberto Garrido & Luis Juana, 2014. "Managing Irrigation Water Shortage: a Comparison Between Five Allocation Rules Based on Crop Benefit Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2315-2329, June.
    10. Hanzhang Zhou & Jinghao Zhang & Shibo Cui & Jianshi Zhao, 2023. "Modeling Hydrologic–Economic Interactions for Sustainable Development: A Case Study in Inner Mongolia, China," Sustainability, MDPI, vol. 16(1), pages 1-30, December.
    11. Mohamed Mohamed & Aysha Al-Mualla, 2010. "Water Demand Forecasting in Umm Al-Quwain (UAE) Using the IWR-MAIN Specify Forecasting Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4093-4120, November.
    12. M. Habibi Davijani & M. E. Banihabib & A. Nadjafzadeh Anvar & S. R. Hashemi, 2016. "Multi-Objective Optimization Model for the Allocation of Water Resources in Arid Regions Based on the Maximization of Socioeconomic Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 927-946, February.
    13. Pradeep Dogra & V. Sharda & P. Ojasvi & Shiv Prasher & R. Patel, 2014. "Compromise Programming Based Model for Augmenting Food Production with Minimum Water Allocation in a Watershed: a Case Study in the Indian Himalayas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5247-5265, December.
    14. Leaky, R. & Caron. P. & Craufurd, P. & Martin, A. & McDonald, A. & Abedini, W. & Afiff, S. & Bakurin, N. & Bass, S. & Hilbeck, A. & Jansen, T. & Lhaloui, S. & Lock, K. & Newman, J. & Primavesi, O. & S, 2009. "Impacts of AKST on development and sustainability goals," IWMI Books, Reports H042791, International Water Management Institute.
    15. Andrés Calizaya & Oliver Meixner & Lars Bengtsson & Ronny Berndtsson, 2010. "Multi-criteria Decision Analysis (MCDA) for Integrated Water Resources Management (IWRM) in the Lake Poopo Basin, Bolivia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2267-2289, August.
    16. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    17. Ijaz Ahmad & Fan Zhang, 2022. "Optimal Agricultural Water Allocation for the Sustainable Development of Surface and Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4219-4236, September.
    18. E. Hernandez & Venkatesh Uddameri, 2010. "Selecting Agricultural Best Management Practices for Water Conservation and Quality Improvements Using Atanassov’s Intuitionistic Fuzzy Sets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4589-4612, December.
    19. J. Alarcón & L. Juana, 2016. "The Water Markets as Effective Tools of Managing Water Shortages in an Irrigation District," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2611-2625, June.
    20. H. Lu & G. Huang & G. Zeng & I. Maqsood & L. He, 2008. "An Inexact Two-stage Fuzzy-stochastic Programming Model for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 991-1016, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:12:p:3051-3063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.