IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v20y2012i1p35-51.html
   My bibliography  Save this article

Unconstrained formulation of standard quadratic optimization problems

Author

Listed:
  • Immanuel Bomze

    ()

  • Luigi Grippo
  • Laura Palagi

Abstract

A standard quadratic optimization problem (StQP) consists of nding the largest or smallest value of a (possibly indenite) quadratic form over the standard simplex which is the intersection of a hyperplane with the positive orthant. This NP-hard problem has several immediate real-world applications like the Maximum-Clique Problem, and it also occurs in a natural way as a subproblem in quadratic programming with linear constraints. We propose unconstrained reformulations of StQPs, by using dierent approaches. We test our method on clique problems from the DIMACS challenge.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Immanuel Bomze & Luigi Grippo & Laura Palagi, 2012. "Unconstrained formulation of standard quadratic optimization problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 35-51, April.
  • Handle: RePEc:spr:topjnl:v:20:y:2012:i:1:p:35-51
    DOI: 10.1007/s11750-010-0166-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-010-0166-4
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Immanuel Bomze & Chen Ling & Liqun Qi & Xinzhen Zhang, 2012. "Standard bi-quadratic optimization problems and unconstrained polynomial reformulations," Journal of Global Optimization, Springer, vol. 52(4), pages 663-687, April.
    2. Dellepiane, Umberto & Palagi, Laura, 2015. "Using SVM to combine global heuristics for the Standard Quadratic Problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 596-605.
    3. Tatyana Gruzdeva, 2013. "On a continuous approach for the maximum weighted clique problem," Journal of Global Optimization, Springer, vol. 56(3), pages 971-981, July.
    4. repec:eee:apmaco:v:270:y:2015:i:c:p:369-377 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:20:y:2012:i:1:p:35-51. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.