IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v32y2023i4d10.1007_s11749-023-00875-w.html
   My bibliography  Save this article

Sparse and debiased lasso estimation and inference for high-dimensional composite quantile regression with distributed data

Author

Listed:
  • Zhaohan Hou

    (Nankai University)

  • Wei Ma

    (Nankai University)

  • Lei Wang

    (Nankai University)

Abstract

We consider the data are inherently distributed and focus on statistical learning in the presence of heavy-tailed and/or asymmetric errors. The composite quantile regression (CQR) estimator is a robust and efficient alternative to the ordinary least squares and single quantile regression estimators. Based on the aggregated and communication-efficient approaches, we propose two classes of sparse and debiased lasso CQR estimation and inference methods. Specifically, an aggregated $$\ell _1$$ ℓ 1 -penalized CQR estimator and a $$\ell _1$$ ℓ 1 -penalized communication-efficient CQR estimator are obtained firstly. To construct confidence intervals and make hypothesis testing, a unified debiasing framework based on smoothed decorrelated score equations is introduced to eliminate biases caused by lasso penalty. Finally, a hard-thresholding method is employed to ensure that the debiased lasso estimators are sparse. The convergence rates and asymptotic properties of the proposed estimators are established and their performance is evaluated through simulations and a real-world dataset.

Suggested Citation

  • Zhaohan Hou & Wei Ma & Lei Wang, 2023. "Sparse and debiased lasso estimation and inference for high-dimensional composite quantile regression with distributed data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(4), pages 1230-1250, December.
  • Handle: RePEc:spr:testjl:v:32:y:2023:i:4:d:10.1007_s11749-023-00875-w
    DOI: 10.1007/s11749-023-00875-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-023-00875-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-023-00875-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Kangning & Li, Shaomin & Zhang, Benle, 2021. "Robust communication-efficient distributed composite quantile regression and variable selection for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    2. Jianqing Fan & Yongyi Guo & Kaizheng Wang, 2023. "Communication-Efficient Accurate Statistical Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1000-1010, April.
    3. Marcelo Fernandes & Emmanuel Guerre & Eduardo Horta, 2021. "Smoothing Quantile Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 338-357, January.
    4. Fengrui Di & Lei Wang, 2022. "Multi-round smoothed composite quantile regression for distributed data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 869-893, October.
    5. Yaohong Yang & Lei Wang, 2023. "Communication-efficient sparse composite quantile regression for distributed data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 261-283, April.
    6. Michael I. Jordan & Jason D. Lee & Yun Yang, 2019. "Communication-Efficient Distributed Statistical Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 668-681, April.
    7. Han, Dongxiao & Huang, Jian & Lin, Yuanyuan & Shen, Guohao, 2022. "Robust post-selection inference of high-dimensional mean regression with heavy-tailed asymmetric or heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 230(2), pages 416-431.
    8. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Yimeng & Li, Zhe & Zhu, Xuening & Gao, Yuan & Wang, Hansheng, 2024. "Distributed estimation and inference for spatial autoregression model with large scale networks," Journal of Econometrics, Elsevier, vol. 238(2).
    2. Luo, Jiyu & Sun, Qiang & Zhou, Wen-Xin, 2022. "Distributed adaptive Huber regression," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    3. Yaohong Yang & Lei Wang, 2023. "Communication-efficient sparse composite quantile regression for distributed data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 261-283, April.
    4. Xiaochao Xia & Sijin He & Naiwen Pang, 2025. "Communication-efficient model averaging prediction for massive data with asymptotic optimality," Statistical Papers, Springer, vol. 66(2), pages 1-45, February.
    5. Wang, Kangning & Zhang, Jingyu & Sun, Xiaofei, 2025. "Adaptive distributed smooth composite quantile regression estimation for large-scale data," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
    6. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    7. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    8. Xiang, Pengcheng & Zhou, Ling & Tang, Lu, 2024. "Transfer learning via random forests: A one-shot federated approach," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    9. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    10. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2023. "Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 235(1), pages 166-179.
    11. Toshio Honda, 2021. "The de-biased group Lasso estimation for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 3-29, February.
    12. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    13. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems," Papers 1304.0282, arXiv.org, revised Oct 2020.
    14. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    15. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    16. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    17. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    18. Valérie Mignon & Celso Brunetti & Marc Joëts, 2023. "Reasons Behind Words: OPEC Narratives and the Oil Market," EconomiX Working Papers 2023-24, University of Paris Nanterre, EconomiX.
    19. Su, Miaomiao & Wang, Qihua, 2022. "A convex programming solution based debiased estimator for quantile with missing response and high-dimensional covariables," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    20. Panxu Yuan & Xiao Guo, 2022. "High-dimensional inference for linear model with correlated errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 21-52, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:32:y:2023:i:4:d:10.1007_s11749-023-00875-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.