One-step statistical estimation method for generalized linear models
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-025-01755-1
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Kengo Kamatani & Masayuki Uchida, 2015. "Hybrid multi-step estimators for stochastic differential equations based on sampled data," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 177-204, July.
- Papastamoulis, Panagiotis & Martin-Magniette, Marie-Laure & Maugis-Rabusseau, Cathy, 2016. "On the estimation of mixtures of Poisson regression models with large number of components," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 97-106.
- Ghosal, Rahul & Ghosh, Sujit K., 2022. "Bayesian inference for generalized linear model with linear inequality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
- Christophe Dutang, 2017. "Some explanations about the IWLS algorithm to fit generalized linear models," Working Papers hal-01577698, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fourrier-Nicolaï Edwin & Lubrano Michel, 2024.
"Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 319-336, April.
- Edwin Fourrier-Nicolai & Michel Lubrano, 2022. "Bayesian inference for non-anonymous Growth Incidence Curves using Bernstein polynomials: an application to academic wage dynamics," Working Papers hal-03880243, HAL.
- Edwin Fourrier-Nicolai & Michel Lubrano, 2022. "Bayesian inference for non-anonymous Growth Incidence Curves using Bernstein polynomials: an application to academic wage dynamics," AMSE Working Papers 2227, Aix-Marseille School of Economics, France.
- Edwin Fourrier-Nicolaï & Michel Lubrano, 2023. "Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics," Post-Print hal-04185645, HAL.
- Edwin Fourrier-Nicolaï & Michel Lubrano, 2023. "Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics," Post-Print hal-04356211, HAL.
- Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
- Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
- Yozo Tonaki & Yusuke Kaino & Masayuki Uchida, 2022. "Adaptive tests for parameter changes in ergodic diffusion processes from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 397-430, July.
- Masahiro Kurisaki, 2023. "Parameter estimation for ergodic linear SDEs from partial and discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 279-330, July.
- Shoichi Eguchi & Hiroki Masuda, 2019. "Data driven time scale in Gaussian quasi-likelihood inference," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 383-430, October.
- Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
- Anne-Sophie Krah & Zoran Nikolić & Ralf Korn, 2020. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Risks, MDPI, vol. 8(1), pages 1-79, February.
- Kutoyants, Yu.A., 2017. "On the multi-step MLE-process for ergodic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2243-2261.
- Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for stochastic differential equations from reduced data," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 435-454, July.
- Che, Yuyuan & Ghosh, Sujit K. & Rejesus, Roderick M., 2022. "Estimating Production Risk Effects with Inequality Constraints," 2024 Annual Meeting, July 28-30, New Orleans, LA 322189, Agricultural and Applied Economics Association.
- Mithun S. Ullal & Iqbal Thonse Hawaldar & Rashmi Soni & Mohammed Nadeem, 2021. "The Role of Machine Learning in Digital Marketing," SAGE Open, , vol. 11(4), pages 21582440211, October.
- Shogo H. Nakakita & Yusuke Kaino & Masayuki Uchida, 2021. "Quasi-likelihood analysis and Bayes-type estimators of an ergodic diffusion plus noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 177-225, February.
- Lluís Bermúdez & Dimitris Karlis, 2022. "Copula-based bivariate finite mixture regression models with an application for insurance claim count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1082-1099, December.
- Simon Clinet, 2020. "Quasi-likelihood analysis for marked point processes and application to marked Hawkes processes," Papers 2001.11624, arXiv.org, revised Aug 2021.
- Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for small diffusion processes based on reduced data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 745-773, October.
- Anne-Sophie Krah & Zoran Nikoli'c & Ralf Korn, 2019. "Machine Learning in Least-Squares Monte Carlo Proxy Modeling of Life Insurance Companies," Papers 1909.02182, arXiv.org.
- A. Gregorio & S. M. Iacus, 2019. "Empirical $$L^2$$ L 2 -distance test statistics for ergodic diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 233-261, July.
- Yu. A. Kutoyants & A. Motrunich, 2016. "On multi-step MLE-process for Markov sequences," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(6), pages 705-724, August.
- Tonaki, Yozo & Uchida, Masayuki, 2023. "Change point inference in ergodic diffusion processes based on high frequency data," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 1-39.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:6:d:10.1007_s00362-025-01755-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i6d10.1007_s00362-025-01755-1.html