IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i1d10.1007_s00362-024-01621-6.html
   My bibliography  Save this article

Kernel density regression in the additive model: a B-spline approach

Author

Listed:
  • Facheng Li

    (Guizhou University)

  • Huilan Liu

    (Guizhou University)

Abstract

This paper investigates the estimation of the additive model. The nonparametric functions in the model are approximated through B-splines, and the kernel density regression method is employed to estimate the unknown parameters. Moreover, the convergence rate of the proposed approach is established. We conducted numerical experiments and real-world data analysis to validate the theoretical properties of our proposed method. Our numerical findings indicate that our approach offers superior estimation performance compared to several existing methods for the additive model, particularly in the presence of asymmetric, multimodal, or heavy-tailed error distributions.

Suggested Citation

  • Facheng Li & Huilan Liu, 2025. "Kernel density regression in the additive model: a B-spline approach," Statistical Papers, Springer, vol. 66(1), pages 1-23, January.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:1:d:10.1007_s00362-024-01621-6
    DOI: 10.1007/s00362-024-01621-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01621-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01621-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    2. Boente, Graciela & Martínez, Alejandra Mercedes, 2023. "A robust spline approach in partially linear additive models," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    3. Jun Zhang & Bingqing Lin & Yiping Yang, 2022. "Maximum nonparametric kernel likelihood estimation for multiplicative linear regression models," Statistical Papers, Springer, vol. 63(3), pages 885-918, June.
    4. Lian, Heng, 2012. "Shrinkage estimation for identification of linear components in additive models," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 225-231.
    5. Xue, Lan & Qu, Annie & Zhou, Jianhui, 2010. "Consistent Model Selection for Marginal Generalized Additive Model for Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1518-1530.
    6. Zhang, Jun & Lin, Bingqing & Zhou, Yan, 2021. "Kernel density estimation for partial linear multivariate responses models," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Wang & Liya Fu & Yanan Song, 2025. "Variable selection and structure identification for additive models with longitudinal data," Computational Statistics, Springer, vol. 40(2), pages 951-975, February.
    2. Yang, Jing & Yang, Hu, 2016. "A robust penalized estimation for identification in semiparametric additive models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 268-277.
    3. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    4. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
    5. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    6. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Sungwon Lee & Joon H. Ro, 2020. "Nonparametric Tests for Conditional Quantile Independence with Duration Outcomes," Working Papers 2013, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    8. Weihua Zhao & Rui Li & Heng Lian, 2022. "High-dimensional quantile varying-coefficient models with dimension reduction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 1-19, January.
    9. Shujie Ma & Oliver Linton & Jiti Gao, 2018. "Estimation in semiparametric quantile factor models," CeMMAP working papers CWP07/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Chen, Liang & Dolado, Juan José & Gonzalo, Jesús & Pan, Haozi, 2023. "Estimation of characteristics-based quantile factor models," UC3M Working papers. Economics 37095, Universidad Carlos III de Madrid. Departamento de Economía.
    11. Yebin Cheng & Jan G. De Gooijer & Dawit Zerom, 2011. "Efficient Estimation of an Additive Quantile Regression Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 46-62, March.
    12. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers 20/12, Institute for Fiscal Studies.
    13. Ma, Shujie & Linton, Oliver & Gao, Jiti, 2021. "Estimation and inference in semiparametric quantile factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 295-323.
    14. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    15. Hojun You & Kyubaek Yoon & Wei-Ying Wu & Jongeun Choi & Chae Young Lim, 2024. "Regularized nonlinear regression with dependent errors and its application to a biomechanical model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(3), pages 481-510, June.
    16. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    17. Holger Dette & Matthias Guhlich & Natalie Neumeyer, 2015. "Testing for additivity in nonparametric quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 437-477, June.
    18. Ai, Chunrong & Li, Hongjun & Lin, Zhongjian & Meng, Meixia, 2015. "Estimation of panel data partly specified Tobit regression with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 316-326.
    19. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    20. Takuma Yoshida & Kanta Naito, 2014. "Asymptotics for penalised splines in generalised additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 269-289, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:1:d:10.1007_s00362-024-01621-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.