IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v63y2022i2d10.1007_s00362-021-01252-1.html
   My bibliography  Save this article

Approximate likelihood with proxy variables for parameter estimation in high-dimensional factor copula models

Author

Listed:
  • Pavel Krupskii

    (University of Melbourne)

  • Harry Joe

    (University of British Columbia)

Abstract

Factor copula models involve latent variables that explain much of the dependence in the observed variables. Their log-likelihoods can involve one-dimensional or multi-dimensional integration. For the one-factor copula with weak residual dependence and for the oblique factor copula model, we show that, under some mild assumptions, proxy variables that are unweighted averages computed from the observed variables can be used for the latent variables when the dimension is large. Then alternative log-likelihoods without integrals can be used for parameter estimation. The proxy variables can help to select appropriate linking copulas in some factor copula models and to perform numerically faster maximum likelihood estimation of parameters. Simulation studies show that parameter estimates obtained using the proxy variable approach are close to those obtained using the maximum likelihood approach. The proxy variable approach is used to analyze a financial data set of stock returns in a single sector.

Suggested Citation

  • Pavel Krupskii & Harry Joe, 2022. "Approximate likelihood with proxy variables for parameter estimation in high-dimensional factor copula models," Statistical Papers, Springer, vol. 63(2), pages 543-569, April.
  • Handle: RePEc:spr:stpapr:v:63:y:2022:i:2:d:10.1007_s00362-021-01252-1
    DOI: 10.1007/s00362-021-01252-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-021-01252-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-021-01252-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pavel Krupskii & Marc G. Genton, 2018. "Linear factor copula models and their properties," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(4), pages 861-878, December.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Dong Hwan Oh & Andrew J. Patton, 2013. "Simulated Method of Moments Estimation for Copula-Based Multivariate Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 689-700, June.
    4. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    5. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    6. Brechmann, Eike C. & Joe, Harry, 2014. "Parsimonious parameterization of correlation matrices using truncated vines and factor analysis," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 233-251.
    7. Hoang Nguyen & M Concepción Ausín & Pedro Galeano, 2019. "Parallel Bayesian Inference for High-Dimensional Dynamic Factor Copulas," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 118-151.
    8. Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
    9. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    2. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
    3. David Walsh-Jones & Daniel Jones & Christoph Reisinger, 2014. "Modelling of dependence in high-dimensional financial time series by cluster-derived canonical vines," Papers 1411.4970, arXiv.org.
    4. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    5. Pavel Krupskii & Harry Joe, 2015. "Tail-weighted measures of dependence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 614-629, March.
    6. Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
    7. Nguyen, Hoang & Ausín, M. Concepción & Galeano, Pedro, 2020. "Variational inference for high dimensional structured factor copulas," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    8. Wen, Xiaoqian & Xie, Yuxin & Pantelous, Athanasios A., 2022. "Extreme price co-movement of commodity futures and industrial production growth: An empirical evaluation," Energy Economics, Elsevier, vol. 108(C).
    9. Mayer, Alexander & Wied, Dominik, 2023. "Estimation and inference in factor copula models with exogenous covariates," Journal of Econometrics, Elsevier, vol. 235(2), pages 1500-1521.
    10. Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
    11. Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
    12. Krupskii, Pavel & Joe, Harry, 2020. "Flexible copula models with dynamic dependence and application to financial data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 148-167.
    13. Hua, Lei & Joe, Harry, 2017. "Multivariate dependence modeling based on comonotonic factors," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 317-333.
    14. Hua, Lei & Polansky, Alan & Pramanik, Paramahansa, 2019. "Assessing bivariate tail non-exchangeable dependence," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    15. Arendarczyk, Marek & Kozubowski, Tomasz. J. & Panorska, Anna K., 2018. "The joint distribution of the sum and maximum of dependent Pareto risks," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 136-156.
    16. EnDer Su, 2017. "Measuring and Testing Tail Dependence and Contagion Risk Between Major Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 325-351, August.
    17. Zhang, Xi & Li, Jian, 2018. "Credit and market risks measurement in carbon financing for Chinese banks," Energy Economics, Elsevier, vol. 76(C), pages 549-557.
    18. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.
    19. Sayed H. Kadhem & Aristidis K. Nikoloulopoulos, 2023. "Factor Tree Copula Models for Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 776-802, September.
    20. Paramahansa Pramanik, 2024. "Dependence on Tail Copula," J, MDPI, vol. 7(2), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:63:y:2022:i:2:d:10.1007_s00362-021-01252-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.