IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v59y2018i2d10.1007_s00362-016-0771-x.html
   My bibliography  Save this article

Complete consistency of estimators for regression models based on extended negatively dependent errors

Author

Listed:
  • Wenzhi Yang

    (Anhui University)

  • Haiyun Xu

    (Anhui University)

  • Ling Chen

    (Anhui University)

  • Shuhe Hu

    (Anhui University)

Abstract

In this paper, we investigate the consistency of the estimators of nonparametric regression model and multiple linear regression model based on extended negatively dependent errors. The complete convergence rates of the estimators of nonparametric regression model are presented. In addition, the rth-mean consistency and complete consistency of the least squares estimator of the multiple linear regression model are obtained too. Finally, some examples and some simulations are illustrated.

Suggested Citation

  • Wenzhi Yang & Haiyun Xu & Ling Chen & Shuhe Hu, 2018. "Complete consistency of estimators for regression models based on extended negatively dependent errors," Statistical Papers, Springer, vol. 59(2), pages 449-465, June.
  • Handle: RePEc:spr:stpapr:v:59:y:2018:i:2:d:10.1007_s00362-016-0771-x
    DOI: 10.1007/s00362-016-0771-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-016-0771-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-016-0771-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Miao & Fangfang Zhao & Ke Wang & Yanping Chen, 2013. "Asymptotic normality and strong consistency of LS estimators in the EV regression model with NA errors," Statistical Papers, Springer, vol. 54(1), pages 193-206, February.
    2. Xuejun Wang & Zeyu Si, 2015. "Complete consistency of the estimator of nonparametric regression model under ND sequence," Statistical Papers, Springer, vol. 56(3), pages 585-596, August.
    3. Xuejun Wang & Chen Xu & Tien-Chung Hu & Andrei Volodin & Shuhe Hu, 2014. "On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 607-629, September.
    4. Gui-Jing, Chen & Lai, T. L. & Wei, C. Z., 1981. "Convergence systems and strong consistency of least squares estimates in regression models," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 319-333, September.
    5. Wang, Xuejun & Hu, Shuhe & Yang, Wenzhi & Ling, Nengxiang, 2010. "Exponential inequalities and inverse moment for NOD sequence," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 452-461, March.
    6. Roussas, George G. & Tran, Lanh T. & Ioannides, D. A., 1992. "Fixed design regression for time series: Asymptotic normality," Journal of Multivariate Analysis, Elsevier, vol. 40(2), pages 262-291, February.
    7. Georgiev, Alexander A., 1988. "Consistent nonparametric multiple regression: The fixed design case," Journal of Multivariate Analysis, Elsevier, vol. 25(1), pages 100-110, April.
    8. Liu, Li, 2009. "Precise large deviations for dependent random variables with heavy tails," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1290-1298, May.
    9. Roussas, George G., 1989. "Consistent regression estimation with fixed design points under dependence conditions," Statistics & Probability Letters, Elsevier, vol. 8(1), pages 41-50, May.
    10. Liang, Han-Ying & Jing, Bing-Yi, 2005. "Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 227-245, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aiting Shen & Siyao Zhang, 2021. "On Complete Consistency for the Estimator of Nonparametric Regression Model Based on Asymptotically Almost Negatively Associated Errors," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1285-1307, December.
    2. Nan Cheng & Chao Lu & Jibing Qi & Xuejun Wang, 2022. "Complete moment convergence for randomly weighted sums of extended negatively dependent random variables with application to semiparametric regression models," Statistical Papers, Springer, vol. 63(2), pages 397-419, April.
    3. Yan Wang & Xuejun Wang, 2021. "Complete f-moment convergence for Sung’s type weighted sums and its application to the EV regression models," Statistical Papers, Springer, vol. 62(2), pages 769-793, April.
    4. Liwang Ding & Ping Chen & Yongming Li, 2020. "Consistency for wavelet estimator in nonparametric regression model with extended negatively dependent samples," Statistical Papers, Springer, vol. 61(6), pages 2331-2349, December.
    5. Xuejun Wang & Yi Wu & Rui Wang & Shuhe Hu, 2021. "On consistency of wavelet estimator in nonparametric regression models," Statistical Papers, Springer, vol. 62(2), pages 935-962, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aiting Shen & Andrei Volodin, 2017. "Weak and strong laws of large numbers for arrays of rowwise END random variables and their applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 605-625, November.
    2. Xuejun Wang & Yi Wu & Shuhe Hu & Nengxiang Ling, 2020. "Complete moment convergence for negatively orthant dependent random variables and its applications in statistical models," Statistical Papers, Springer, vol. 61(3), pages 1147-1180, June.
    3. Yi Wu & Xuejun Wang & Shuhe Hu & Lianqiang Yang, 2018. "Weighted version of strong law of large numbers for a class of random variables and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 379-406, June.
    4. Yi Wu & Xuejun Wang & Aiting Shen, 2023. "Strong Convergence for Weighted Sums of Widely Orthant Dependent Random Variables and Applications," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-28, March.
    5. Mengmei Xi & Rui Wang & Zhaoyang Cheng & Xuejun Wang, 2020. "Some convergence properties for partial sums of widely orthant dependent random variables and their statistical applications," Statistical Papers, Springer, vol. 61(4), pages 1663-1684, August.
    6. Xuejun Wang & Zeyu Si, 2015. "Complete consistency of the estimator of nonparametric regression model under ND sequence," Statistical Papers, Springer, vol. 56(3), pages 585-596, August.
    7. Xuejun Wang & Yi Wu & Rui Wang & Shuhe Hu, 2021. "On consistency of wavelet estimator in nonparametric regression models," Statistical Papers, Springer, vol. 62(2), pages 935-962, April.
    8. Xuejun Wang & Chen Xu & Tien-Chung Hu & Andrei Volodin & Shuhe Hu, 2014. "On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 607-629, September.
    9. Xuejun Wang & Yi Wu & Shuhe Hu, 2016. "Exponential probability inequality for $$m$$ m -END random variables and its applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(2), pages 127-147, February.
    10. Aiting Shen & Ying Zhang & Andrei Volodin, 2015. "Applications of the Rosenthal-type inequality for negatively superadditive dependent random variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 295-311, April.
    11. Aiting Shen & Siyao Zhang, 2021. "On Complete Consistency for the Estimator of Nonparametric Regression Model Based on Asymptotically Almost Negatively Associated Errors," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1285-1307, December.
    12. Yan, Ji Gao, 2018. "On Complete Convergence in Marcinkiewicz-Zygmund Type SLLN for END Random Variables and its Applications," IRTG 1792 Discussion Papers 2018-042, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    13. Wu, Yi & Wang, Xuejun & Hu, Shuhe, 2017. "Complete moment convergence for weighted sums of weakly dependent random variables and its application in nonparametric regression model," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 56-66.
    14. Zhou, Xing-cai & Lin, Jin-guan, 2012. "A wavelet estimator in a nonparametric regression model with repeated measurements under martingale difference error’s structure," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1914-1922.
    15. Xuejun Wang & Yi Wu & Shuhe Hu, 2019. "The Berry–Esseen bounds of the weighted estimator in a nonparametric regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1143-1162, October.
    16. Hongyan Fang & Saisai Ding & Xiaoqin Li & Wenzhi Yang, 2020. "Asymptotic Approximations of Ratio Moments Based on Dependent Sequences," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
    17. Yi Wu & Xuejun Wang & Aiting Shen, 2021. "Strong convergence properties for weighted sums of m-asymptotic negatively associated random variables and statistical applications," Statistical Papers, Springer, vol. 62(5), pages 2169-2194, October.
    18. Yang, Shanchao, 2003. "Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples," Statistics & Probability Letters, Elsevier, vol. 62(2), pages 101-110, April.
    19. Han-Ying Liang & Ya-Mei Liu, 2011. "Asymptotic normality of variance estimator in a heteroscedastic model with dependent errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 351-365.
    20. Xin Deng & Xuejun Wang & Yi Wu, 2021. "The Berry–Esseen type bounds of the weighted estimator in a nonparametric model with linear process errors," Statistical Papers, Springer, vol. 62(2), pages 963-984, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:59:y:2018:i:2:d:10.1007_s00362-016-0771-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.