IDEAS home Printed from
   My bibliography  Save this article

Subgroup-Based Adaptive (SUBA) Designs for Multi-arm Biomarker Trials


  • Yanxun Xu

    (The University of Texas at Austin)

  • Lorenzo Trippa

    (Harvard School of Public Health)

  • Peter Müller

    (The University of Texas at Austin)

  • Yuan Ji

    () (NorthShore University Health System
    The University of Chicago)


Abstract Targeted therapies based on biomarker profiling are becoming a mainstream direction of cancer research and treatment. Depending on the expression of specific prognostic biomarkers, targeted therapies assign different cancer drugs to subgroups of patients even if they are diagnosed with the same type of cancer by traditional means, such as tumor location. For example, Herceptin is only indicated for the subgroup of patients with HER2+ breast cancer, but not other types of breast cancer. However, subgroups like HER2+ breast cancer with effective targeted therapies are rare, and most cancer drugs are still being applied to large patient populations that include many patients who might not respond or benefit. Also, the response to targeted agents in humans is usually unpredictable. To address these issues, we propose subgroup-based adaptive (SUBA), designs that simultaneously search for prognostic subgroups and allocate patients adaptively to the best subgroup-specific treatments throughout the course of the trial. The main features of SUBA include the continuous reclassification of patient subgroups based on a random partition model and the adaptive allocation of patients to the best treatment arm based on posterior predictive probabilities. We compare the SUBA design with three alternative designs including equal randomization, outcome-adaptive randomization, and a design based on a probit regression. In simulation studies, we find that SUBA compares favorably against the alternatives.

Suggested Citation

  • Yanxun Xu & Lorenzo Trippa & Peter Müller & Yuan Ji, 2016. "Subgroup-Based Adaptive (SUBA) Designs for Multi-arm Biomarker Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 159-180, June.
  • Handle: RePEc:spr:stabio:v:8:y:2016:i:1:d:10.1007_s12561-014-9117-1
    DOI: 10.1007/s12561-014-9117-1

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Baladandayuthapani, Veerabhadran & Ji, Yuan & Talluri, Rajesh & Nieto-Barajas, Luis E. & Morris, Jeffrey S., 2010. "Bayesian Random Segmentation Models to Identify Shared Copy Number Aberrations for Array CGH Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1358-1375.
    2. Riten Mitra & Peter Müller & Shoudan Liang & Lu Yue & Yuan Ji, 2013. "A Bayesian Graphical Model for ChIP-Seq Data on Histone Modifications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 69-80, March.
    3. Guosheng Yin & Nan Chen & J. Jack Lee, 2012. "Phase II trial design with Bayesian adaptive randomization and predictive probability," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(2), pages 219-235, March.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:8:y:2016:i:1:d:10.1007_s12561-014-9117-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.