IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v64y2025i1d10.1007_s00355-024-01555-w.html
   My bibliography  Save this article

Optimal algorithms for multiwinner elections and the Chamberlin–Courant Rule

Author

Listed:
  • Kamesh Munagala

    (Duke University)

  • Zeyu Shen

    (Princeton University)

  • Kangning Wang

    (Rutgers University)

Abstract

We consider the algorithmic question of choosing a subset of candidates of a given size k from a set of m candidates, with knowledge of voters’ ordinal rankings over all candidates. We consider the well-known and classic scoring rule for achieving diverse representation: the Chamberlin–Courant (CC) or 1-Borda rule, where the score of a committee is the average over the voters, of the rank of the best candidate in the committee for that voter; and its generalization to the average of the top s best candidates, called the s-Borda rule. Our first result is an improved analysis of the natural and well-studied greedy heuristic. We show that greedy achieves a $$\left( 1 - \frac{2}{k+1}\right) $$ 1 - 2 k + 1 -approximation to the maximization (or satisfaction) version of CC rule, and a $$\left( 1 - \frac{2\,s}{k+1}\right) $$ 1 - 2 s k + 1 -approximation to the s-Borda score. This significantly improves the existing submodularity-based analysis of the greedy algorithm that only shows a $$(1-1/e)$$ ( 1 - 1 / e ) -approximation. Our result also improves on the best known approximation algorithm for this problem. We achieve this result by showing that the average dissatisfaction score for the greedy algorithm is at most $$2\cdot \frac{m+1}{k+1}$$ 2 · m + 1 k + 1 for the CC rule, and at most $$2\,s^2 \cdot \frac{m+1}{k+1}$$ 2 s 2 · m + 1 k + 1 for s-Borda. We show these dissatisfaction score bounds are tight up to constants, and even the constant factor of 2 in the case of the CC rule is almost tight. For the dissatisfaction (or minimization) version of the problem, it is known that the average dissatisfaction score of the best committee cannot be approximated in polynomial time to within any constant factor when s is a constant (under standard computational complexity assumptions). As our next result, we strengthen this to show that the score of $$\frac{m+1}{k+1}$$ m + 1 k + 1 can be viewed as an optimal benchmark for the CC rule, in the sense that it is essentially the best achievable score of any polynomial-time algorithm even when the optimal score is a polynomial factor smaller. We show that another well-studied algorithm for this problem, called the Banzhaf rule, attains this benchmark. We finally show that for the s-Borda rule, when the optimal value is small, these algorithms can be improved by a factor of $$\tilde{\Omega }(\sqrt{s})$$ Ω ~ ( s ) via LP rounding. Our upper and lower bounds are a significant improvement over previous results, and taken together, not only enable us to perform a finer comparison of greedy algorithms for these problems, but also provide analytic justification for using such algorithms in practice.

Suggested Citation

  • Kamesh Munagala & Zeyu Shen & Kangning Wang, 2025. "Optimal algorithms for multiwinner elections and the Chamberlin–Courant Rule," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 64(1), pages 143-178, February.
  • Handle: RePEc:spr:sochwe:v:64:y:2025:i:1:d:10.1007_s00355-024-01555-w
    DOI: 10.1007/s00355-024-01555-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00355-024-01555-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00355-024-01555-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Nicolaus Tideman & Daniel Richardson, 2000. "Better Voting Methods Through Technology: The Refinement-Manageability Trade-Off in the Single Transferable Vote," Public Choice, Springer, vol. 103(1), pages 13-34, April.
    3. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    4. Haris Aziz & Barton E. Lee, 2020. "The expanding approvals rule: improving proportional representation and monotonicity," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(1), pages 1-45, January.
    5. Chamberlin, John R. & Courant, Paul N., 1983. "Representative Deliberations and Representative Decisions: Proportional Representation and the Borda Rule," American Political Science Review, Cambridge University Press, vol. 77(3), pages 718-733, September.
    6. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Tideman, Nicolaus & Richardson, Daniel, 2000. "Better Voting Methods through Technology: The Refinement-Manageabililty Trade-Off in the Single Transferable Vote," Public Choice, Springer, vol. 103(1-2), pages 13-34, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haris Aziz & Markus Brill & Vincent Conitzer & Edith Elkind & Rupert Freeman & Toby Walsh, 2017. "Justified representation in approval-based committee voting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(2), pages 461-485, February.
    2. Aziz, Haris & Lee, Barton E., 2022. "A characterization of proportionally representative committees," Games and Economic Behavior, Elsevier, vol. 133(C), pages 248-255.
    3. Kamesh Munagala & Zeyu Shen & Kangning Wang, 2021. "Optimal Algorithms for Multiwinner Elections and the Chamberlin-Courant Rule," Papers 2106.00091, arXiv.org.
    4. Kamesh Munagala & Yiheng Shen & Kangning Wang & Zhiyi Wang, 2021. "Approximate Core for Committee Selection via Multilinear Extension and Market Clearing," Papers 2110.12499, arXiv.org.
    5. Haris Aziz & Barton E. Lee, 2020. "The expanding approvals rule: improving proportional representation and monotonicity," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(1), pages 1-45, January.
    6. Piotr Faliszewski & Piotr Skowron & Arkadii Slinko & Nimrod Talmon, 2018. "Multiwinner analogues of the plurality rule: axiomatic and algorithmic perspectives," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(3), pages 513-550, October.
    7. Edith Elkind & Piotr Faliszewski & Piotr Skowron & Arkadii Slinko, 2017. "Properties of multiwinner voting rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(3), pages 599-632, March.
    8. Dominik Peters & Grzegorz Pierczy'nski & Piotr Skowron, 2020. "Proportional Participatory Budgeting with Additive Utilities," Papers 2008.13276, arXiv.org, revised Oct 2022.
    9. Eric Kamwa, 2022. "The Condorcet Loser Criterion in Committee Selection," Working Papers hal-03880064, HAL.
    10. Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
    11. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    12. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    13. Yang, Yue & Umboh, Seeun William & Ramezani, Mohsen, 2024. "Freelance drivers with a decline choice: Dispatch menus in on-demand mobility services for assortment optimization," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
    14. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    15. Guanyi Wang, 2024. "Robust Network Targeting with Multiple Nash Equilibria," Papers 2410.20860, arXiv.org, revised Nov 2024.
    16. Majun Shi & Zishen Yang & Wei Wang, 2023. "Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 516-543, February.
    17. Jiaming Hu & Dachuan Xu & Donglei Du & Cuixia Miao, 2024. "Differentially private submodular maximization with a cardinality constraint over the integer lattice," Journal of Combinatorial Optimization, Springer, vol. 47(4), pages 1-24, May.
    18. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    19. Mohammad Abouei Mehrizi & Federico Corò & Emilio Cruciani & Gianlorenzo D’Angelo, 2022. "Election control through social influence with voters’ uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 635-669, August.
    20. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:64:y:2025:i:1:d:10.1007_s00355-024-01555-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.