IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v115y2018i1d10.1007_s11192-018-2659-0.html
   My bibliography  Save this article

The contribution of the lexical component in hybrid clustering, the case of four decades of “Scientometrics”

Author

Listed:
  • Bart Thijs

    (KU Leuven)

  • Wolfgang Glänzel

    (KU Leuven
    Library of the Hungarian Academy of Sciences)

Abstract

The introduction of textual analysis and the use of lexical similarities already proved an important asset in science mapping. Earlier research showed the added value of hybrid document networks over link-based ones through the reduction of the extreme sparseness. However, it was only after the application of Natural Language Processing and phrase extraction that networks purely based on lexical similarities could be used as input for topic detection in quantitative science studies. This study investigates the contribution of the lexical component in hybrid cluster on a set of articles published in the journal Scientometrics since its foundation during four decades. Shifting the weight of the lexical components generates changes in the structure of the underlying hybrid network, which can be detected through clustering techniques. We show that these changes are not moving documents randomly, but in fact identify small groups of papers either at the borderline between different topics or combining those. In addition, the analysis substantiates that the lexical component adopts the structure of the network rather than amplifies hidden structures of the link-based network.

Suggested Citation

  • Bart Thijs & Wolfgang Glänzel, 2018. "The contribution of the lexical component in hybrid clustering, the case of four decades of “Scientometrics”," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 21-33, April.
  • Handle: RePEc:spr:scient:v:115:y:2018:i:1:d:10.1007_s11192-018-2659-0
    DOI: 10.1007/s11192-018-2659-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2659-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2659-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolfgang Glänzel & Bart Thijs, 2017. "Using hybrid methods and ‘core documents’ for the representation of clusters and topics: the astronomy dataset," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1071-1087, May.
    2. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    3. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    4. Frizo Janssens & Wolfgang Glänzel & Bart Moor, 2008. "A hybrid mapping of information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(3), pages 607-631, June.
    5. Wolfgang Glänzel & Bart Thijs, 2011. "Using ‘core documents’ for the representation of clusters and topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 297-309, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Held & Grit Laudel & Jochen Gläser, 2021. "Challenges to the validity of topic reconstruction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4511-4536, May.
    2. Saeed-Ul Hassan & Naif R. Aljohani & Mudassir Shabbir & Umair Ali & Sehrish Iqbal & Raheem Sarwar & Eugenio Martínez-Cámara & Sebastián Ventura & Francisco Herrera, 2020. "Tweet Coupling: a social media methodology for clustering scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 973-991, August.
    3. Bart Thijs, 2020. "Using neural-network based paragraph embeddings for the calculation of within and between document similarities," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 835-849, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rons, Nadine, 2018. "Bibliometric approximation of a scientific specialty by combining key sources, title words, authors and references," Journal of Informetrics, Elsevier, vol. 12(1), pages 113-132.
    2. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    3. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    4. Matthias Held & Grit Laudel & Jochen Gläser, 2021. "Challenges to the validity of topic reconstruction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4511-4536, May.
    5. Rey-Long Liu, 2015. "Passage-Based Bibliographic Coupling: An Inter-Article Similarity Measure for Biomedical Articles," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    6. Bart Thijs & Edgar Schiebel & Wolfgang Glänzel, 2013. "Do second-order similarities provide added-value in a hybrid approach?," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 667-677, September.
    7. Viergutz, Tim & Schulze-Ehlers, Birgit, 2018. "The use of hybrid scientometric clustering for systematic literature reviews in business and economics," DARE Discussion Papers 1804, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).
    8. Wolfgang Glänzel & Bart Thijs, 2012. "Using ‘core documents’ for detecting and labelling new emerging topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 399-416, May.
    9. Mu-Hsuan Huang & Chia-Pin Chang, 2014. "Detecting research fronts in OLED field using bibliographic coupling with sliding window," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1721-1744, March.
    10. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    11. Ronald N. Kostoff, 2014. "Literature-related discovery: common factors for Parkinson’s Disease and Crohn’s Disease," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 623-657, September.
    12. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    13. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.
    14. Shuo Xu & Junwan Liu & Dongsheng Zhai & Xin An & Zheng Wang & Hongshen Pang, 2018. "Overlapping thematic structures extraction with mixed-membership stochastic blockmodel," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 61-84, October.
    15. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    16. Tuba Bircan & Almila Alkim Akdag Salah, 2022. "A Bibliometric Analysis of the Use of Artificial Intelligence Technologies for Social Sciences," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    17. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib & Ainin Sulaiman, 2023. "Light-emitting diode (LED) research: A bibliometric analysis during 2003–2018," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 173-191, February.
    18. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    19. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    20. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:115:y:2018:i:1:d:10.1007_s11192-018-2659-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.