IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v107y2016i2d10.1007_s11192-016-1854-0.html
   My bibliography  Save this article

Diffusion of nanotechnology knowledge in Turkey and its network structure

Author

Listed:
  • Hamid Darvish

    (Kastamonu University)

  • Yaşar Tonta

    (Hacettepe University)

Abstract

This paper aims to assess the diffusion and adoption of nanotechnology knowledge within the Turkish scientific community using social network analysis and bibliometrics. We retrieved a total of 10,062 records of nanotechnology papers authored by Turkish researchers between 2000 and 2011 from Web of Science and divided the data set into two 6-year periods. We analyzed the most prolific and collaborative authors and universities on individual, institutional and international levels based on their network properties (e.g., centrality) as well as the nanotechnology research topics studied most often by the Turkish researchers. We used co-word analysis and mapping to identify the major nanotechnology research fields in Turkey on the basis of the co-occurrence of words in the titles of papers. We found that nanotechnology research and development in Turkey is on the rise and its diffusion and adoption have increased tremendously thanks to the Turkish government’s decision a decade ago identifying nanotechnology as a strategic field and providing constant support since then. Turkish researchers tend to collaborate within their own groups or universities and the overall connectedness of the network is thus low. Their publication and collaboration patterns conform to Lotka’s law. They work mainly on nanotechnology applications in Materials Sciences, Chemistry and Physics, among others. This is commensurate, more or less, with the global trends in nanotechnology research and development.

Suggested Citation

  • Hamid Darvish & Yaşar Tonta, 2016. "Diffusion of nanotechnology knowledge in Turkey and its network structure," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 569-592, May.
  • Handle: RePEc:spr:scient:v:107:y:2016:i:2:d:10.1007_s11192-016-1854-0
    DOI: 10.1007/s11192-016-1854-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-016-1854-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-016-1854-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    2. Chen, Chaomei & Chen, Yue & Horowitz, Mark & Hou, Haiyan & Liu, Zeyuan & Pellegrino, Donald, 2009. "Towards an explanatory and computational theory of scientific discovery," Journal of Informetrics, Elsevier, vol. 3(3), pages 191-209.
    3. Neslihan Aydogan-Duda, 2012. "Nanotechnology: A Descriptive Account," Innovation, Technology, and Knowledge Management, in: Neslihan Aydogan-Duda (ed.), Making It to the Forefront, edition 127, chapter 0, pages 1-7, Springer.
    4. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    5. Haiyan Hou & Hildrun Kretschmer & Zeyuan Liu, 2008. "The structure of scientific collaboration networks in Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(2), pages 189-202, May.
    6. María-Antonia Ovalle-Perandones & Juan Gorraiz & Martin Wieland & Christian Gumpenberger & Carlos Olmeda-Gómez, 2013. "The influence of European Framework Programmes on scientific collaboration in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(1), pages 59-74, October.
    7. Leydesdorff, Loet & Welbers, Kasper, 2011. "The semantic mapping of words and co-words in contexts," Journal of Informetrics, Elsevier, vol. 5(3), pages 469-475.
    8. Joachim Schummer, 2004. "Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(3), pages 425-465, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamdi A. Al-Jamimi & Galal M. BinMakhashen & Lutz Bornmann, 2022. "Use of bibliometrics for research evaluation in emerging markets economies: a review and discussion of bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5879-5930, October.
    2. Guijie Zhang & Luning Liu & Fangfang Wei, 2019. "Key nodes mining in the inventor–author knowledge diffusion network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 721-735, March.
    3. Eloiza Kohlbeck & Paulo Augusto Cauchick-Miguel & Glauco Henrique de Sousa Mendes & Thayla Tavares de Sousa Zomer, 2023. "A Longitudinal History-Based Review of the Product-Service System: Past, Present, and Future," Sustainability, MDPI, vol. 15(15), pages 1-22, August.
    4. Hao Wang & Sanhong Deng & Xinning Su, 2016. "A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1725-1759, December.
    5. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
    2. Gohar Feroz Khan & Jacob Wood, 2015. "Information technology management domain: emerging themes and keyword analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 959-972, November.
    3. Fritze, Martin P. & Urmetzer, Florian & Khan, Gohar F. & Sarstedt, Marko & Neely, Andy & Schäfers, Tobias, 2018. "From Goods to Services Consumption: A Social Network Analysis on Sharing Economy and Servitization Research," SMR - Journal of Service Management Research, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 2(3), pages 3-16.
    4. Daniele Rotolo & Ismael Rafols & Michael Hopkins & Loet Leydesdorff, 2014. "Scientometric Mapping as a Strategic Intelligence Tool for the Governance of Emerging Technologies," SPRU Working Paper Series 2014-10, SPRU - Science Policy Research Unit, University of Sussex Business School.
    5. Chencheng Fang & Jiantong Zhang & Wei Qiu, 2017. "Online classified advertising: a review and bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1481-1511, December.
    6. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    7. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    8. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    9. Souzanchi Kashani, Ebrahim & Roshani, Saeed, 2019. "Evolution of innovation system literature: Intellectual bases and emerging trends," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 68-80.
    10. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    11. Duan, Zhengxiao & Zhang, Yanni & Deng, Jun & Shu, Pan & Yao, Di, 2023. "A systematic exploration of mapping knowledge domains for free radical research related to coal," Energy, Elsevier, vol. 282(C).
    12. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    13. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.
    14. Mehdi Toloo & Rouhollah Khodabandelou & Amar Oukil, 2022. "A Comprehensive Bibliometric Analysis of Fractional Programming (1965–2020)," Mathematics, MDPI, vol. 10(11), pages 1-21, May.
    15. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    16. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    17. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    18. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    19. Huamei Shao & Gunwoo Kim & Qing Li & Galen Newman, 2021. "Web of Science-Based Green Infrastructure: A Bibliometric Analysis in CiteSpace," Land, MDPI, vol. 10(7), pages 1-19, July.
    20. Zhigao Liu & Yimei Yin & Weidong Liu & Michael Dunford, 2015. "Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 135-158, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:107:y:2016:i:2:d:10.1007_s11192-016-1854-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.