IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v84y2022i1d10.1007_s13571-021-00266-x.html
   My bibliography  Save this article

Sequential Estimation of an Inverse Gaussian Mean with Known Coefficient of Variation

Author

Listed:
  • Ajit Chaturvedi

    (University of Delhi)

  • Sudeep R. Bapat

    (Indian Institute of Management)

  • Neeraj Joshi

    (University of Delhi)

Abstract

This paper deals with developing sequential procedures for estimating the mean of an inverse Gaussian (IG) distribution when the population coefficient of variation (CV) is known. We consider the minimum risk and bounded risk point estimation problems respectively. Moreover, we make use of a weighted squared-error loss function and aim to control the associated risk functions. Instead of the usual estimator, i.e., the sample mean, Searls J. Amer. Stat. Assoc. 50, 1225–1226 (1964) estimator is utilized for the purpose of estimation. Second-order approximations are also obtained under both estimation set-ups. We establish that Searls’ estimator dominates the usual estimator (sample mean) under proposed sequential sampling procedures. An extensive simulation analysis is carried out to validate the theoretical findings and real data illustrations are also provided to show the practical utility of our proposed sequential stopping strategies.

Suggested Citation

  • Ajit Chaturvedi & Sudeep R. Bapat & Neeraj Joshi, 2022. "Sequential Estimation of an Inverse Gaussian Mean with Known Coefficient of Variation," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 402-420, May.
  • Handle: RePEc:spr:sankhb:v:84:y:2022:i:1:d:10.1007_s13571-021-00266-x
    DOI: 10.1007/s13571-021-00266-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-021-00266-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-021-00266-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katuomi Hirano & Kōsei Iwase, 1989. "Conditional information for an inverse Gaussian distribution with known coefficient of variation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(2), pages 279-287, June.
    2. Ajit Chaturvedi & Sudeep R. Bapat & Neeraj Joshi, 2020. "Purely Sequential and k-Stage Procedures for Estimating the Mean of an Inverse Gaussian Distribution," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1193-1219, September.
    3. Sudeep R. Bapat, 2018. "On purely sequential estimation of an inverse Gaussian mean," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 1005-1024, November.
    4. Antonio Punzo, 2019. "A new look at the inverse Gaussian distribution with applications to insurance and economic data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(7), pages 1260-1287, May.
    5. Grzegorz Rempala & Richard Derrig, 2005. "Modeling Hidden Exposures in Claim Severity Via the Em Algorithm," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 108-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Zhuang & Sudeep R. Bapat & Wenjie Wang, 2024. "Statistical Inference on the Shape Parameter of Inverse Generalized Weibull Distribution," Mathematics, MDPI, vol. 12(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sudeep R. Bapat, 2023. "A novel sequential approach to estimate functions of parameters of two gamma populations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(6), pages 627-641, August.
    2. Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    3. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    4. Punzo, Antonio & Bagnato, Luca, 2021. "Modeling the cryptocurrency return distribution via Laplace scale mixtures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    5. Yang, Yu-Chen & Lin, Tsung-I & Castro, Luis M. & Wang, Wan-Lun, 2020. "Extending finite mixtures of t linear mixed-effects models with concomitant covariates," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    6. Wei Zhao & Saima K Khosa & Zubair Ahmad & Muhammad Aslam & Ahmed Z Afify, 2020. "Type-I heavy tailed family with applications in medicine, engineering and insurance," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    7. Shengkun Xie, 2019. "Defining Geographical Rating Territories in Auto Insurance Regulation by Spatially Constrained Clustering," Risks, MDPI, vol. 7(2), pages 1-20, April.
    8. Ajit Chaturvedi & Sudeep R. Bapat & Neeraj Joshi, 2020. "Purely Sequential and k-Stage Procedures for Estimating the Mean of an Inverse Gaussian Distribution," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1193-1219, September.
    9. Amovin-Assagba, Martial & Gannaz, Irène & Jacques, Julien, 2022. "Outlier detection in multivariate functional data through a contaminated mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:84:y:2022:i:1:d:10.1007_s13571-021-00266-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.