IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v87y2025i2d10.1007_s13171-025-00384-y.html
   My bibliography  Save this article

Nelson-Aalen Tail Product-limit Process and Extreme Value Index Estimation Under Random Censorship

Author

Listed:
  • Djamel Meraghni

    (Mohamed Khider University)

  • Abdelhakim Necir

    (Mohamed Khider University)

  • Louiza Soltane

    (Mohamed Khider University)

Abstract

On the basis of Nelson-Aalen nonparametric estimator of the cumulative distribution function, we provide a weak approximation to tail product-limit process for randomly right-censored heavy-tailed data. In this context, a new consistent estimator of the extreme value index is introduced and its asymptotic normality is established only by assuming the second-order condition of regular variation of the underlying distribution tail. In addition, an estimation procedure is described for high quantiles related to the above-mentioned tail index estimator. Finally, a simulation study is carried out to evaluate the performances of the newly proposed estimators with comparison to already existing ones.

Suggested Citation

  • Djamel Meraghni & Abdelhakim Necir & Louiza Soltane, 2025. "Nelson-Aalen Tail Product-limit Process and Extreme Value Index Estimation Under Random Censorship," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 87(2), pages 526-574, August.
  • Handle: RePEc:spr:sankha:v:87:y:2025:i:2:d:10.1007_s13171-025-00384-y
    DOI: 10.1007/s13171-025-00384-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-025-00384-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-025-00384-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    2. Laurent Gardes & Gilles Stupfler, 2015. "Erratum to: Estimating extreme quantiles under random truncation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 228-228, June.
    3. Ameraoui, Abdelkader & Boukhetala, Kamal & Dupuy, Jean-François, 2016. "Bayesian estimation of the tail index of a heavy tailed distribution under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 148-168.
    4. Laurent Gardes & Gilles Stupfler, 2015. "Estimating extreme quantiles under random truncation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 207-227, June.
    5. Peng, L., 1998. "Asymptotically unbiased estimators for the extreme-value index," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 107-115, June.
    6. Beirlant, J. & Maribe, G. & Verster, A., 2018. "Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 114-122.
    7. Beirlant, J. & Bardoutsos, A. & de Wet, T. & Gijbels, I., 2016. "Bias reduced tail estimation for censored Pareto type distributions," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 78-88.
    8. Einmahl, J.H.J. & Deheuvels, P, 1996. "On the strong limiting behavior of local functionals of empirical processes based upon censored data," Other publications TiSEM eac4a4cd-81ee-4107-8c70-a, Tilburg University, School of Economics and Management.
    9. Neves, Claudia & Fraga Alves, M. I., 2004. "Reiss and Thomas' automatic selection of the number of extremes," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 689-704, November.
    10. Einmahl, J.H.J. & Koning, A.J., 1992. "Limit theorems for a general weighted process under random censoring," Other publications TiSEM ab26769f-cec3-4b07-9e8a-9, Tilburg University, School of Economics and Management.
    11. Laurent Gardes & Gilles Stupfler, 2015. "Erratum to: Estimating extreme quantiles under random truncation," Post-Print hal-01456099, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saida Mancer & Abdelhakim Necir & Souad Benchaira, 2023. "Bias Reduction in Kernel Tail Index Estimation for Randomly Truncated Pareto-Type Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1510-1547, August.
    2. Laurent Gardes & Stéphane Girard & Gilles Stupfler, 2020. "Beyond tail median and conditional tail expectation: Extreme risk estimation using tail Lp‐optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 922-949, September.
    3. Worms, J. & Worms, R., 2016. "A Lynden-Bell integral estimator for extremes of randomly truncated data," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 106-117.
    4. Benchaira, Souad & Meraghni, Djamel & Necir, Abdelhakim, 2015. "On the asymptotic normality of the extreme value index for right-truncated data," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 378-384.
    5. Einmahl, J.H.J. & Deheuvels, P., 2000. "Functional limit laws for the increments of Kaplan-Meier product-limit processes and applications," Other publications TiSEM ac9bbdc0-62f8-4b48-9a84-1, Tilburg University, School of Economics and Management.
    6. Stupfler, Gilles, 2016. "Estimating the conditional extreme-value index under random right-censoring," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 1-24.
    7. Djamel Meraghni & Abdelhakim Necir, 2007. "Estimating the Scale Parameter of a Lévy-stable Distribution via the Extreme Value Approach," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 557-572, December.
    8. Beirlant, J. & Maribe, G. & Verster, A., 2018. "Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 114-122.
    9. Benchaira, Souad & Meraghni, Djamel & Necir, Abdelhakim, 2016. "Kernel estimation of the tail index of a right-truncated Pareto-type distribution," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 186-193.
    10. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    11. Maarten R C van Oordt & Chen Zhou, 2019. "Estimating Systematic Risk under Extremely Adverse Market Conditions," Journal of Financial Econometrics, Oxford University Press, vol. 17(3), pages 432-461.
    12. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    13. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    14. Zhou, Yong & Yip, Paul S. F., 1999. "A Strong Representation of the Product-Limit Estimator for Left Truncated and Right Censored Data," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 261-280, May.
    15. Yuri Goegebeur & Armelle Guillou & Jing Qin, 2024. "Conditional tail moment and reinsurance premium estimation under random right censoring," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 230-250, March.
    16. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation in Extreme Value Regression Models of Hedge Fund Tail Risks," Papers 2304.06950, arXiv.org.
    17. Wolfgang Glänzel & Henk F. Moed, 2013. "Opinion paper: thoughts and facts on bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 381-394, July.
    18. Daniela Castro‐Camilo & Raphaël Huser & Håvard Rue, 2022. "Practical strategies for generalized extreme value‐based regression models for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
    19. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    20. Liu, Qing & Peng, Liang & Wang, Xing, 2017. "Haezendonck–Goovaerts risk measure with a heavy tailed loss," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 28-47.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:87:y:2025:i:2:d:10.1007_s13171-025-00384-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.