IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v59y2025i1d10.1007_s11135-024-01959-x.html
   My bibliography  Save this article

Temporal trends and presidential traits in the Italian end-of-year addresses: comparing and contrasting KBS and STM results

Author

Listed:
  • Andrea Sciandra

    (Università di Padova
    Università di Padova)

  • Matilde Trevisani

    (Università di Trieste)

  • Arjuna Tuzzi

    (Università di Padova)

Abstract

This study compares and contrasts the results of two lexical-based methods aimed at identifying content temporal trends in diachronic text corpora. A corpus of end-of-year addresses of the presidents of the Italian Republic constitutes a relevant case of political speech useful to understand how the temporal evolution of topics can be represented and whether a downward (ex post) or an upward (ex ante) extraction of topics is more effective for the identification of presidents’ distinctive traits and trends. The first method is a knowledge-based system (KBS), which identifies clusters of words sharing a similar temporal pattern through a three-step statistical learning procedure. The second is a structural topic model (STM), which identifies main topics by probing the possible effect of the year and president factors on the speech-topic and the topic-word distributions. In KBS clusters, the individual trait of the president stands out as one of the most relevant elements and determines the contents of speeches; moreover, topic trends can also be discerned ex post while interpreting the results. On the other hand, STM directly achieves the whole topic structure but seems not as powerful as expected in portraying the life cycle of words and detecting groups of words that distinguish the speeches of a specific president. As most presidential speeches are rich and cover a wide range of topics, the results suggest that, in this case, the interpretative tool offered by STM brings out more challenges than strengths. Conversely, direct observation of the temporal trajectory of individual words allows for more detailed analyses and meaningful results, thanks to the flexible and adaptive KBS approach.

Suggested Citation

  • Andrea Sciandra & Matilde Trevisani & Arjuna Tuzzi, 2025. "Temporal trends and presidential traits in the Italian end-of-year addresses: comparing and contrasting KBS and STM results," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(1), pages 905-935, February.
  • Handle: RePEc:spr:qualqt:v:59:y:2025:i:1:d:10.1007_s11135-024-01959-x
    DOI: 10.1007/s11135-024-01959-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-024-01959-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-024-01959-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valentina Rizzoli & Matilde Trevisani & Arjuna Tuzzi, 2023. "Portraying the life cycle of ideas in social psychology through functional (textual) data analysis: a toolkit for digital history," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5197-5226, September.
    2. Matilde Trevisani & Arjuna Tuzzi, 2015. "A portrait of JASA: the History of Statistics through analysis of keyword counts in an early scientific journal," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 1287-1304, May.
    3. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    4. Feinerer, Ingo & Hornik, Kurt & Meyer, David, 2008. "Text Mining Infrastructure in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i05).
    5. Stefano Sbalchiero & Maciej Eder, 2020. "Topic modeling, long texts and the best number of topics. Some Problems and solutions," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(4), pages 1095-1108, August.
    6. Genolini, Christophe & Alacoque, Xavier & Sentenac, Mariane & Arnaud, Catherine, 2015. "kml and kml3d: R Packages to Cluster Longitudinal Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i04).
    7. Chonghui Guo & Menglin Lu & Wei Wei, 2021. "An Improved LDA Topic Modeling Method Based on Partition for Medium and Long Texts," Annals of Data Science, Springer, vol. 8(2), pages 331-344, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuyue Huang & Lena Jingen Liang & Hwansuk Chris Choi, 2022. "How We Failed in Context: A Text-Mining Approach to Understanding Hotel Service Failures," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    2. Mohamed M. Mostafa, 2023. "A one-hundred-year structural topic modeling analysis of the knowledge structure of international management research," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3905-3935, August.
    3. Daoud, Adel & Kohl, Sebastian, 2016. "How much do sociologists write about economic topics? Using big data to test some conventional views in economic sociology, 1890 to 2014," MPIfG Discussion Paper 16/7, Max Planck Institute for the Study of Societies.
    4. David C Molik & DeAndre Tomlinson & Shane Davitt & Eric L Morgan & Matthew Sisk & Benjamin Roche & Natalie Meyers & Michael E Pfrender, 2021. "Combining natural language processing and metabarcoding to reveal pathogen-environment associations," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(4), pages 1-21, April.
    5. Hornik, Kurt & Grün, Bettina, 2014. "movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i10).
    6. Croce, Annalisa & Toschi, Laura & Ughetto, Elisa & Zanni, Sara, 2024. "Cleantech and policy framework in Europe: A machine learning approach," Energy Policy, Elsevier, vol. 186(C).
    7. Holand, Øystein & Contiero, Barbara & Næss, Marius W. & Cozzi, Giulio, 2024. "“The Times They Are A-Changin' “ – research trends and perspectives of reindeer pastoralism – A review using text mining and topic modelling," Land Use Policy, Elsevier, vol. 136(C).
    8. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    9. Chansiri, Karikarn & Wei, Xinyu & Chor, Ka Ho Brian, 2024. "Using natural language processing approaches to characterize professional experiences of child welfare workers," Children and Youth Services Review, Elsevier, vol. 166(C).
    10. B Ian Hutchins & Xin Yuan & James M Anderson & George M Santangelo, 2016. "Relative Citation Ratio (RCR): A New Metric That Uses Citation Rates to Measure Influence at the Article Level," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-25, September.
    11. Motta Queiroz, Mariza & Roque, Carlos & Moura, Filipe & Marôco, João, 2024. "Understanding the expectations of parents regarding their children's school commuting by public transport using latent Dirichlet Allocation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    12. Maximilian Andres & Lisa Bruttel & Jana Friedrichsen, 2019. "The Effect of a Leniency Rule on Cartel Formation and Stability: Experiments with Open Communication," Discussion Papers of DIW Berlin 1835, DIW Berlin, German Institute for Economic Research.
    13. Weiss, Daniel & Nemeczek, Fabian, 2021. "A text-based monitoring tool for the legitimacy and guidance of technological innovation systems," Technology in Society, Elsevier, vol. 66(C).
    14. KOCAK, Necmettin Alpay, 2021. "The Impacts Of Speeches On Nowcasting Gdp: A Case Study On Euro Area Markets," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 25(1), pages 6-29, March.
    15. Lisa Bruttel & Maximilian Andres, 2024. "Communicating Cartel Intentions," CEPA Discussion Papers 77, Center for Economic Policy Analysis.
    16. Olgun Aydin & Cansu Altunbas & Elvan Hayat, 2021. "Using Text Mining Techniques to Understand the Economic Effects of COVID-19 Pandemic," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 4), pages 760-774.
    17. Abhinav Khare & Qing He & Rajan Batta, 2020. "Predicting gasoline shortage during disasters using social media," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 693-726, September.
    18. Lovrić, Marko & Lovrić, Nataša & Mavsar, Robert, 2020. "Mapping forest-based bioeconomy research in Europe," Forest Policy and Economics, Elsevier, vol. 110(C).
    19. Cristian Mejia & Yuya Kajikawa, 2021. "The Academic Landscapes of Manufacturing Enterprise Performance and Environmental Sustainability: A Study of Commonalities and Differences," IJERPH, MDPI, vol. 18(7), pages 1-16, March.
    20. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:59:y:2025:i:1:d:10.1007_s11135-024-01959-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.