IDEAS home Printed from https://ideas.repec.org/a/spr/patien/v7y2014i1p5-21.html
   My bibliography  Save this article

Segmenting Patients and Physicians Using Preferences from Discrete Choice Experiments

Author

Listed:
  • Ken Deal

Abstract

People often form groups or segments that have similar interests and needs and seek similar benefits from health providers. Health organizations need to understand whether the same health treatments, prevention programs, services, and products should be applied to everyone in the relevant population or whether different treatments need to be provided to each of several segments that are relatively homogeneous internally but heterogeneous among segments. Our objective was to explain the purposes, benefits, and methods of segmentation for health organizations, and to illustrate the process of segmenting health populations based on preference coefficients from a discrete choice conjoint experiment (DCE) using an example study of prevention of cyberbullying among university students. We followed a two-level procedure for investigating segmentation incorporating several methods for forming segments in Level 1 using DCE preference coefficients and testing their quality, reproducibility, and usability by health decision makers. Covariates (demographic, behavioral, lifestyle, and health state variables) were included in Level 2 to further evaluate quality and to support the scoring of large databases and developing typing tools for assigning those in the relevant population, but not in the sample, to the segments. Several segmentation solution candidates were found during the Level 1 analysis, and the relationship of the preference coefficients to the segments was investigated using predictive methods. Those segmentations were tested for their quality and reproducibility and three were found to be very close in quality. While one seemed better than others in the Level 1 analysis, another was very similar in quality and proved ultimately better in predicting segment membership using covariates in Level 2. The two segments in the final solution were profiled for attributes that would support the development and acceptance of cyberbullying prevention programs among university students. Those segments were very different—where one wanted substantial penalties against cyberbullies and were willing to devote time to a prevention program, while the other felt no need to be involved in prevention and wanted only minor penalties. Segmentation recognizes key differences in why patients and physicians prefer different health programs and treatments. A viable segmentation solution may lead to adapting prevention programs and treatments for each targeted segment and/or to educating and communicating to better inform those in each segment of the program/treatment benefits. Segment members’ revealed preferences showing behavioral changes provide the ultimate basis for evaluating the segmentation benefits to the health organization. Copyright Springer International Publishing Switzerland 2014

Suggested Citation

  • Ken Deal, 2014. "Segmenting Patients and Physicians Using Preferences from Discrete Choice Experiments," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 7(1), pages 5-21, March.
  • Handle: RePEc:spr:patien:v:7:y:2014:i:1:p:5-21
    DOI: 10.1007/s40271-013-0037-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s40271-013-0037-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s40271-013-0037-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vermunt, Jeroen K., 2010. "Latent Class Modeling with Covariates: Two Improved Three-Step Approaches," Political Analysis, Cambridge University Press, vol. 18(4), pages 450-469.
    2. Francesca Bassi, 2007. "Latent class factor models for market segmentation: an application to pharmaceuticals," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(2), pages 279-287, August.
    3. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enayatollah Homaie Rad & Mohammad Hajizadeh & Vahid Yazdi-Feyzabadi & Sajad Delavari & Zahra Mohtasham-Amiri, 2021. "How Much Money Should be Paid for a Patient to Isolate During the COVID-19 Outbreak? A Discrete Choice Experiment in Iran," Applied Health Economics and Health Policy, Springer, vol. 19(5), pages 709-719, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    2. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    3. Francesca Bassi, 2016. "Dynamic segmentation with growth mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 263-279, June.
    4. Catania, Leopoldo & Di Mari, Roberto, 2021. "Hierarchical Markov-switching models for multivariate integer-valued time-series," Journal of Econometrics, Elsevier, vol. 221(1), pages 118-137.
    5. Miriam Aparicio, 2021. "Resiliency and Cooperation or Regarding Social and Collective Competencies for University Achievement. An Analysis from a Systemic Perspective," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 8, ejser_v8_.
    6. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    7. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    8. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    9. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    10. Fetene B. Tekle & Dereje W. Gudicha & Jeroen K. Vermunt, 2016. "Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 209-224, June.
    11. Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
    12. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    13. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    14. Patrick D. Shay & Stephen S. Farnsworth Mick, 2017. "Clustered and distinct: a taxonomy of local multihospital systems," Health Care Management Science, Springer, vol. 20(3), pages 303-315, September.
    15. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    16. Matthijs Warrens, 2010. "Inequalities Between Kappa and Kappa-Like Statistics for k×k Tables," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 176-185, March.
    17. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    18. Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 295-304, June.
    19. Francesca Bassi & Fulvia Pennoni & Luca Rossetto, 2020. "The Italian market of sparkling wines: Latent variable models for brand positioning, customer loyalty, and transitions across brands' preferences," Agribusiness, John Wiley & Sons, Ltd., vol. 36(4), pages 542-567, October.
    20. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:patien:v:7:y:2014:i:1:p:5-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.