IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v99y2019i2d10.1007_s11069-019-03807-w.html
   My bibliography  Save this article

An objective and efficient method for estimating probabilistic coastal inundation hazards

Author

Listed:
  • Kun Yang

    (University of Florida)

  • Vladimir Paramygin

    (University of Florida)

  • Y. Peter Sheng

    (University of Florida)

Abstract

The joint probability method (JPM) is the traditional way to determine the base flood elevation due to storm surge, and it usually requires simulation of storm surge response from tens of thousands of synthetic storms. The simulated storm surge is combined with probabilistic storm rates to create flood maps with various return periods. However, the map production requires enormous computational cost if state-of-the-art hydrodynamic models with high-resolution numerical grids are used; hence, optimal sampling (JPM-OS) with a small number of (~ 100–200) optimal (representative) storms is preferred. This paper presents a significantly improved JPM-OS, where a small number of optimal storms are objectively selected, and simulated storm surge responses of tens of thousands of storms are accurately interpolated from those for the optimal storms using a highly efficient kriging surrogate model. This study focuses on Southwest Florida and considers ~ 150 optimal storms that are selected based on simulations using either the low fidelity (with low resolution and simple physics) SLOSH model or the high fidelity (with high resolution and comprehensive physics) CH3D model. Surge responses to the optimal storms are simulated using both SLOSH and CH3D, and the flood elevations are calculated using JPM-OS with highly efficient kriging interpolations. For verification, the probabilistic inundation maps are compared to those obtained by the traditional JPM and variations of JPM-OS that employ different interpolation schemes, and computed probabilistic water levels are compared to those calculated by historical storm methods. The inundation maps obtained with the JPM-OS differ less than 10% from those obtained with JPM for 20,625 storms, with only 4% of the computational time.

Suggested Citation

  • Kun Yang & Vladimir Paramygin & Y. Peter Sheng, 2019. "An objective and efficient method for estimating probabilistic coastal inundation hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1105-1130, November.
  • Handle: RePEc:spr:nathaz:v:99:y:2019:i:2:d:10.1007_s11069-019-03807-w
    DOI: 10.1007/s11069-019-03807-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03807-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03807-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nick Taylor & Jennifer Irish & Ikpoto Udoh & Matthew Bilskie & Scott Hagen, 2015. "Development and uncertainty quantification of hurricane surge response functions for hazard assessment in coastal bays," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1103-1123, June.
    2. Jize Zhang & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Fatimata Diop, 2018. "Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1225-1253, December.
    3. Donald T. Resio & Taylor G. Asher & Jennifer L. Irish, 2017. "The effects of natural structure on estimated tropical cyclone surge extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1609-1637, September.
    4. Gaofeng Jia & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Andrew B. Kennedy & Jane M. Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    5. Gaofeng Jia & Alexandros Taflanidis & Norberto Nadal-Caraballo & Jeffrey Melby & Andrew Kennedy & Jane Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    6. Jennifer Irish & Donald Resio & Mary Cialone, 2009. "A surge response function approach to coastal hazard assessment. Part 2: Quantification of spatial attributes of response functions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 183-205, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Yin & Sudong Xu & Xinghua Zhu & Wenrui Huang & Shuo Liu, 2021. "Estimation of spatial extreme sea levels in Xiamen seas by the quadrature JPM-OS method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 327-348, March.
    2. Grant Hutchings & Bruno Sansó & James Gattiker & Devin Francom & Donatella Pasqualini, 2023. "Comparing emulation methods for a high‐resolution storm surge model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Madison O. Campbell, 2021. "Incorporation of sea level rise in storm surge surrogate modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 531-563, January.
    2. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Matthew Plumlee & Taylor G. Asher & Elaine Spiller & Richard A. Luettich & Brian Blanton & Tracy L. Kijewski-Correa & Andrew Kennedy & Lauren Schmie, 2021. "Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1349-1386, November.
    3. Chih-Hung Hsu & Francisco Olivera & Jennifer L. Irish, 2018. "A hurricane surge risk assessment framework using the joint probability method and surge response functions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 7-28, April.
    4. Donald T. Resio & Taylor G. Asher & Jennifer L. Irish, 2017. "The effects of natural structure on estimated tropical cyclone surge extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1609-1637, September.
    5. WoongHee Jung & Aikaterini P. Kyprioti & Ehsan Adeli & Alexandros A. Taflanidis, 2023. "Exploring the sensitivity of probabilistic surge estimates to forecast errors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1371-1409, January.
    6. Jize Zhang & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Fatimata Diop, 2018. "Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1225-1253, December.
    7. Gaofeng Jia & Alexandros Taflanidis & Norberto Nadal-Caraballo & Jeffrey Melby & Andrew Kennedy & Jane Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    8. Zhenqiang Wang & Gaofeng Jia, 2021. "A novel agent-based model for tsunami evacuation simulation and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2045-2071, January.
    9. C. Qiao & A. T. Myers, 2022. "Surrogate modeling of time-dependent metocean conditions during hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1545-1563, February.
    10. Gaofeng Jia & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Andrew B. Kennedy & Jane M. Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    11. Li, Min & Wang, Ruo-Qian & Jia, Gaofeng, 2020. "Efficient dimension reduction and surrogate-based sensitivity analysis for expensive models with high-dimensional outputs," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Grant Hutchings & Bruno Sansó & James Gattiker & Devin Francom & Donatella Pasqualini, 2023. "Comparing emulation methods for a high‐resolution storm surge model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
    13. Jie Song & Zhong-Ren Peng & Liyuan Zhao & Chih-Hung Hsu, 2016. "Developing a theoretical framework for integrated vulnerability of businesses to sea level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1219-1239, November.
    14. Mir Mousavi & Jennifer Irish & Ashley Frey & Francisco Olivera & Billy Edge, 2011. "Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding," Climatic Change, Springer, vol. 104(3), pages 575-597, February.
    15. Donald Resio & Jennifer Irish & Mary Cialone, 2009. "A surge response function approach to coastal hazard assessment – part 1: basic concepts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 163-182, October.
    16. S. M. Smallegan & J. L. Irish & A. R. Dongeren, 2017. "Developed barrier island adaptation strategies to hurricane forcing under rising sea levels," Climatic Change, Springer, vol. 143(1), pages 173-184, July.
    17. Bukvic, A. & Mitchell, A. & Shao, Y. & Irish, J.L., 2023. "Spatiotemporal implications of flooding on relocation risk in rural and urban coastal municipalities," Land Use Policy, Elsevier, vol. 132(C).
    18. Changsheng Chen & Zhaolin Lin & Robert C. Beardsley & Tom Shyka & Yu Zhang & Qichun Xu & Jianhua Qi & Huichan Lin & Danya Xu, 2021. "Impacts of sea level rise on future storm-induced coastal inundations over massachusetts coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 375-399, March.
    19. A. T. Ismail-Zadeh & S. L. Cutter & K. Takeuchi & D. Paton, 2017. "Forging a paradigm shift in disaster science," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 969-988, March.
    20. Jie Song & Xinyu Fu & Ruoniu Wang & Zhong-Ren Peng & Zongni Gu, 2018. "Does planned retreat matter? Investigating land use change under the impacts of flooding induced by sea level rise," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 703-733, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:99:y:2019:i:2:d:10.1007_s11069-019-03807-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.