IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v89y2017i1d10.1007_s11069-017-2961-9.html
   My bibliography  Save this article

An approach for estimating the largest probable tsunami from far-field subduction zone earthquakes

Author

Listed:
  • Nikos Kalligeris

    (University of Southern California)

  • Luis Montoya

    (University of Southern California)

  • Aykut Ayca

    (University of Southern California)

  • Patrick Lynett

    (University of Southern California)

Abstract

Following the recent unexpected earthquake events of 2004 and 2011, it can be cautiously extrapolated that all major subduction zones bearing the capacity to produce mega-earthquake events will eventually do so given enough time, irrespective of the lack of such in the relatively short historical record. This notion has led to an effort of assigning maximum earthquake magnitudes to all major subduction zones, either based on geological constraints or based on size–frequency relations, or a combination of both. In this study, we utilize the proposed maximum magnitudes to assess tsunami hazard in Central California in the very long return periods. We also assessed tsunami hazard following an alternative methodology to calculate maximum magnitudes, which uses scaling relations for subduction zone earthquakes and maximum fault rupture scenarios found in literature. A sensitivity analysis is performed for Central California that is applicable to any coastal site in the Pacific Rim and can readily provide a strong indication for which subduction zones beam the most energy toward a study area. The maximum earthquake scenarios are then narrowed down to a few candidates, for which the initial conditions are examined in more detail. The chosen worst-case scenarios for Central California stem from the Alaska–Aleutian subduction zone that beams more energy and generates the biggest amplitude waves toward the study area. The largest tsunami scenario produces maximum free surface elevations of 15 m and run-up heights greater than 20 m.

Suggested Citation

  • Nikos Kalligeris & Luis Montoya & Aykut Ayca & Patrick Lynett, 2017. "An approach for estimating the largest probable tsunami from far-field subduction zone earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 233-253, October.
  • Handle: RePEc:spr:nathaz:v:89:y:2017:i:1:d:10.1007_s11069-017-2961-9
    DOI: 10.1007/s11069-017-2961-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2961-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2961-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Geller, 2011. "Shake-up time for Japanese seismology," Nature, Nature, vol. 472(7344), pages 407-409, April.
    2. Susan L. Bilek & Thorne Lay, 1999. "Rigidity variations with depth along interplate megathrust faults in subduction zones," Nature, Nature, vol. 400(6743), pages 443-446, July.
    3. Eric Geist & Tom Parsons, 2014. "Undersampling power-law size distributions: effect on the assessment of extreme natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 565-595, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tina Dura & Andra J. Garner & Robert Weiss & Robert E. Kopp & Simon E. Engelhart & Robert C. Witter & Richard W. Briggs & Charles S. Mueller & Alan R. Nelson & Benjamin P. Horton, 2021. "Changing impacts of Alaska-Aleutian subduction zone tsunamis in California under future sea-level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiang & Jha, Awadhesh N. & Chen, Xi & Dong, Jie-fang & Wang, Xing-min, 2015. "The future of nuclear safety: vital role of geoscientists?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 239-243.
    2. Yo Fukutani & Suppasri Anawat & Fumihiko Imamura, 2016. "Uncertainty in tsunami wave heights and arrival times caused by the rupture velocity in the strike direction of large earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1749-1782, February.
    3. Yo Fukutani & Suppasri Anawat & Fumihiko Imamura, 2016. "Uncertainty in tsunami wave heights and arrival times caused by the rupture velocity in the strike direction of large earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1749-1782, February.
    4. Max Wyss & Philippe Rosset, 2013. "Mapping seismic risk: the current crisis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 49-52, August.
    5. Vladimir G. Kossobokov & Anastasia K. Nekrasova, 2018. "Earthquake hazard and risk assessment based on unified scaling law for earthquakes: Altai–Sayan Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1435-1449, September.
    6. Katsuya Yamori & James D. Goltz, 2021. "Disasters without Borders: The Coronavirus Pandemic, Global Climate Change and the Ascendancy of Gradual Onset Disasters," IJERPH, MDPI, vol. 18(6), pages 1-21, March.
    7. Jacques Jaussaud & Julien Martine & Serge Rey, 2012. "Japon : pistes pour l’analyse des conséquences économiques et managériales du Grand Tremblement de Terre du 11 mars 2011," Working Papers hal-01880346, HAL.
    8. Di Maio, F. & Belotti, M. & Volpe, M. & Selva, J. & Zio, E., 2022. "Parallel density scanned adaptive Kriging to improve local tsunami hazard assessment for coastal infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Ivan Wong, 2014. "How big, how bad, how often: are extreme events accounted for in modern seismic hazard analyses?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(3), pages 1299-1309, July.
    10. Shinichi Kamiya & Noriyoshi Yanase, 2019. "Learning from extreme catastrophes," Journal of Risk and Uncertainty, Springer, vol. 59(1), pages 85-124, August.
    11. G. Gopinath & F. Løvholt & G. Kaiser & C. Harbitz & K. Srinivasa Raju & M. Ramalingam & Bhoop Singh, 2014. "Impact of the 2004 Indian Ocean tsunami along the Tamil Nadu coastline: field survey review and numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 743-769, June.
    12. Eric Geist & Uri Brink & Matthew Gove, 2014. "A framework for the probabilistic analysis of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 123-142, October.
    13. Simon Day & Carina Fearnley, 2015. "A classification of mitigation strategies for natural hazards: implications for the understanding of interactions between mitigation strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1219-1238, November.
    14. Wang, Qiang & Chen, Xi & Yi-chong, Xu, 2013. "Accident like the Fukushima unlikely in a country with effective nuclear regulation: Literature review and proposed guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 126-146.
    15. Mingwei Zhang & Shengdong Liu & Hideki Shimada, 2018. "Regional hazard prediction of rock bursts using microseismic energy attenuation tomography in deep mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1359-1378, September.
    16. Max Wyss & Anastasia Nekrasova & Vladimir Kossobokov, 2012. "Errors in expected human losses due to incorrect seismic hazard estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 927-935, July.
    17. Jerome Stein & Seth Stein, 2014. "Gray swans: comparison of natural and financial hazard assessment and mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(3), pages 1279-1297, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:89:y:2017:i:1:d:10.1007_s11069-017-2961-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.