IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i2d10.1007_s11069-017-2802-x.html
   My bibliography  Save this article

Policy and systems of flood risk management: a comparative study between Japan and Spain

Author

Listed:
  • Isao Nakamura

    (Toyo University)

  • Maria Carmen Llasat

    (University of Barcelona)

Abstract

This paper shows a comparison from the perspective of flood risk management between two regions of different countries: Tokyo Metropolis (Japan) and Catalonia (Spain). The comparison is based on flood damage data for a 30-year period (1981–2010), legislation, disaster management plans, recovering measures, and communication strategies. A total of 219 flood events and 110 deaths were recorded in Catalonia during 1981–2010, while there were 191 floods in Tokyo, during the same period, giving place to 27 deaths and missing people. In both countries, most of the deaths occurred outdoors and the majority as a consequence of imprudent behavior. Nearly 10% of flood victims in Catalonia were foreign citizens. Regarding the institutions from the state and the communities involved in flood risk management, we have found a similar structure between the two countries. In accordance with the European Floods Directive, all the Spanish regions susceptible of having floods have flood hazard maps for different return periods, including 500 years while in the case of Japan the return periods are usually shorter. Recently, flood risk maps have been built for Catalonia, but none is available in a foreign language. Although all the maps are available in Internet, in Spain it is not mandatory to distribute maps to the public neither evacuation maps in flood-prone areas. On the contrary, evacuation and hazard maps in Japan have some parts written in different languages. In both countries, flood hazard maps are not compulsorily linked to other countermeasures such as land-use regulation (the municipality has the last decision) or flood insurance. Thresholds of heavy rain warnings are similar in both countries, using rain amounts over both short and long periods. Although the Japanese method appears more sophisticated using humidity and runoff indexes, it is too complicated for people to understand it. In contrast, only Catalonia has forecast thresholds considering probability levels. On flood insurance, only Spain has governmental aid to the flood insurance system. The level of flood risk perception is low among the population in both countries, and social communication for flood risk is insufficient, mainly in Catalonia. Thus, it is very important that individuals recognize the flood risk in the area to reduce the number of victims.

Suggested Citation

  • Isao Nakamura & Maria Carmen Llasat, 2017. "Policy and systems of flood risk management: a comparative study between Japan and Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 919-943, June.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2802-x
    DOI: 10.1007/s11069-017-2802-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2802-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2802-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Christian Kuhlicke & Anna Scolobig & Sue Tapsell & Annett Steinführer & Bruna Marchi, 2011. "Contextualizing social vulnerability: findings from case studies across Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 789-810, August.
    2. Zbigniew Kundzewicz & Uwe Ulbrich & Tim brücher & Dariusz Graczyk & Andreas Krüger & Gregor Leckebusch & Lucas Menzel & Iwona Pińskwar & Maciej Radziejewski & Małgorzata Szwed, 2005. "Summer Floods in Central Europe – Climate Change Track?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 36(1), pages 165-189, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabri Alkan & Uğur Karadurmuş, 2023. "Risk assessment of natural and other hazard factors on drowning incidents in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2459-2475, September.
    2. C. Emdad Haque & Mahed-Ul-Islam Choudhury & Md. Sowayib Sikder, 2019. "“Events and failures are our only means for making policy changes”: learning in disaster and emergency management policies in Manitoba, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 137-162, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    2. Hamenoo, Emma Seyram, 2024. "Social workers’ perspective on the impact of Covid-19 on clients’ vulnerability in Ghana," Children and Youth Services Review, Elsevier, vol. 160(C).
    3. Seunghoo Jeong & D. K. Yoon, 2018. "Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    4. Alexander Fekete, 2021. "Motivation, Satisfaction, and Risks of Operational Forces and Helpers Regarding the 2021 and 2013 Flood Operations in Germany," Sustainability, MDPI, vol. 13(22), pages 1-26, November.
    5. Shang-Shu Shih & Sheng-Chi Yang & Huei-Tau Ouyang, 2014. "Anthropogenic effects and climate change threats on the flood diversion of Erchung Floodway in Tanshui River, northern Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1733-1747, September.
    6. Sina Razzaghi Asl & Asif Rahman & Eric Tate & William Lehman & Oliver Wing, 2025. "Social vulnerability correlates of flood risk to crops and buildings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(7), pages 8137-8158, April.
    7. Margaret I. Rolfe & Sabrina Winona Pit & John W. McKenzie & Jo Longman & Veronica Matthews & Ross Bailie & Geoffrey G. Morgan, 2020. "Social vulnerability in a high-risk flood-affected rural region of NSW, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 631-650, April.
    8. Ibolya Török, 2018. "Qualitative Assessment of Social Vulnerability to Flood Hazards in Romania," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    9. D. Skublics & P. Rutschmann, 2015. "Progress in natural flood retention at the Bavarian Danube," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 51-67, February.
    10. Anjum Tasnuva & Md. Riad Hossain & Roquia Salam & Abu Reza Md. Towfiqul Islam & Muhammad Mainuddin Patwary & Sobhy M. Ibrahim, 2021. "Employing social vulnerability index to assess household social vulnerability of natural hazards: an evidence from southwest coastal Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10223-10245, July.
    11. Galateia Terti & Isabelle Ruin & Jonathan J. Gourley & Pierre Kirstetter & Zachary Flamig & Juliette Blanchet & Ami Arthur & Sandrine Anquetin, 2019. "Toward Probabilistic Prediction of Flash Flood Human Impacts," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 140-161, January.
    12. Beatriz Vallina Acha & Estrella Durá Ferrandis & Mireia Ferri Sanz & Maite Ferrando García, 2021. "Engaging People and Co-Producing Research with Persons and Communities to Foster Person-Centred Care: A Meta-Synthesis," IJERPH, MDPI, vol. 18(23), pages 1-25, November.
    13. Linda Sorg & Neiler Medina & Daniel Feldmeyer & Arlex Sanchez & Zoran Vojinovic & Jörn Birkmann & Alessandra Marchese, 2018. "Capturing the multifaceted phenomena of socioeconomic vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 257-282, May.
    14. Serrano-Bosquet, Francisco Javier & Carreño Correa, Lina María & Giorgi, Emanuele, 2023. "Review: technological resources for vulnerable communities," Technology in Society, Elsevier, vol. 75(C).
    15. Moritz Odersky & Max Löffler, 2024. "Differential Exposure to Climate Change? Evidence from the 2021 Floods in Germany," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 22(3), pages 551-576, September.
    16. Gianna Ida Festa & Luigi Guerriero & Mariano Focareta & Giuseppe Meoli & Silvana Revellino & Francesco Maria Guadagno & Paola Revellino, 2022. "Calculating Economic Flood Damage through Microscale Risk Maps and Data Generalization: A Pilot Study in Southern Italy," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    17. Yang Zhou & Ning Li & Wenxiang Wu & Jidong Wu, 2014. "Assessment of provincial social vulnerability to natural disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2165-2186, April.
    18. Francisco Valderrey & Lina Carreño & Simone Lucatello & Emanuele Giorgi, 2023. "Multidisciplinary Evaluation of Vulnerabilities: Communities in Northern Mexico," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
    19. Eduardo Macías García & Fábio Ferreira Dias, 2024. "Future scenarios in the former oil capital: coastal flooding and social vulnerability in Macaé, RJ," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18625-18640, July.
    20. Heidi Kreibich & Philip Bubeck & Mathijs Vliet & Hans Moel, 2015. "A review of damage-reducing measures to manage fluvial flood risks in a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 967-989, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2802-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.