IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v86y2017i2d10.1007_s11069-016-2334-9.html
   My bibliography  Save this article

Stratigraphic features of the Maltese Archipelago: a synthesis

Author

Listed:
  • Niccolò Baldassini

    (Università di Catania)

  • Agata Di Stefano

    (Università di Catania)

Abstract

The present study gathers a large amount of both existing and unpublished biostratigraphic data, which allows a detailed and complete definition of the stratigraphic features of the late Oligocene–late Miocene Maltese Archipelago sedimentary succession, recording in turn the tectonic and eustatic history of the Central Mediterranean region. We selected five sections in the Malta Island and three in Gozo, representative of the entire sedimentary succession, affected by well-known erosional surfaces, correlated to low-stands of the sea level, often associated with phoshatic layers, linked to the subsequent high-stands. The sedimentary interval, and thus the associated hiatuses, was constrained both by the bio-chronostratigraphic attribution and by the comparison with the third-order succession of the New Jersey passive margin, which shows strict analogy with the geodynamic context in which the Maltese succession deposited. The diachroneity at the base of the formations in the different sections, and the presence of intraformational unconformity/hiatuses, highlighted the role of the tectonic, which depicted a complex sedimentary basin, characterized by more distal versus more marginal sectors. Furthermore, the possibility to compare the sedimentary succession with the oxygen isotope curve connects the sedimentation interruptions, recorded within the Maltese Archipelago deposits, to global cooling events.

Suggested Citation

  • Niccolò Baldassini & Agata Di Stefano, 2017. "Stratigraphic features of the Maltese Archipelago: a synthesis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 203-231, April.
  • Handle: RePEc:spr:nathaz:v:86:y:2017:i:2:d:10.1007_s11069-016-2334-9
    DOI: 10.1007/s11069-016-2334-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2334-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2334-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James C. Zachos & Gerald R. Dickens & Richard E. Zeebe, 2008. "An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics," Nature, Nature, vol. 451(7176), pages 279-283, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lidia Selmi & Paola Coratza & Ritienne Gauci & Mauro Soldati, 2019. "Geoheritage as a Tool for Environmental Management: A Case Study in Northern Malta (Central Mediterranean Sea)," Resources, MDPI, vol. 8(4), pages 1-25, October.
    2. Lidia Selmi & Thais S. Canesin & Ritienne Gauci & Paulo Pereira & Paola Coratza, 2022. "Degradation Risk Assessment: Understanding the Impacts of Climate Change on Geoheritage," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    3. Sebastiano D’Amico & Pauline Galea & Ruben P. Borg & Marc Bonello, 2017. "Georisks in the Mediterranean and their mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 199-202, April.
    4. Stefano Devoto & Linley J. Hastewell & Mariacristina Prampolini & Stefano Furlani, 2021. "Dataset of Gravity-Induced Landforms and Sinkholes of the Northeast Coast of Malta (Central Mediterranean Sea)," Data, MDPI, vol. 6(8), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kopp, Robert E. & Mignone, Bryan K., 2012. "The US government's social cost of carbon estimates after their first two years: Pathways for improvement," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-41.
    2. Katherine A. Crichton & Jamie D. Wilson & Andy Ridgwell & Flavia Boscolo-Galazzo & Eleanor H. John & Bridget S. Wade & Paul N. Pearson, 2023. "What the geological past can tell us about the future of the ocean’s twilight zone," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Corentin Jouault & André Nel & Vincent Perrichot & Frédéric Legendre & Fabien L. Condamine, 2022. "Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Nicholas A Famoso & Edward Byrd Davis, 2014. "Occlusal Enamel Complexity in Middle Miocene to Holocene Equids (Equidae: Perissodactyla) of North America," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    5. Lewis A. Jones & Philip D. Mannion & Alexander Farnsworth & Fran Bragg & Daniel J. Lunt, 2022. "Climatic and tectonic drivers shaped the tropical distribution of coral reefs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Maria Helena Henriques & Keynesménio Neto, 2023. "A Geo-Itinerary to Foster Sustainable Tourism in West African Islands: Storytelling the Evolution of the Ancient Cameroon Volcanic Line Coral Reefs," Sustainability, MDPI, vol. 15(24), pages 1-15, December.
    7. Simon Dietz & Nicholas Stern, 2014. "Endogenous growth, convexity of damages and climate risk: how Nordhaus� framework supports deep cuts in carbon emissions," GRI Working Papers 159, Grantham Research Institute on Climate Change and the Environment.
    8. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    9. Xiaojie Fan & Yongchao Lu & Jingyu Zhang & Shiqiang Wu & Liang Zhang & Xiaojuan Du & Qinyu Cui & Hao Wang, 2022. "Lithofacies Characteristics, Depositional Environment and Sequence Stratigraphic Framework in the Saline Lacustrine Basin-A Case Study of the Eocene Low Member of Xingouzui Formation, Jianghan Basin, ," Energies, MDPI, vol. 15(17), pages 1-17, August.
    10. Ralph Hippe, 2015. "Why did the knowledge transition occur in the West and not in the East? ICT and the role of governments in Europe, East Asia and the Muslim world," GRI Working Papers 180, Grantham Research Institute on Climate Change and the Environment.
    11. Fei Zhang & Mathieu Dellinger & Robert G. Hilton & Jimin Yu & Mark B. Allen & Alexander L. Densmore & Hui Sun & Zhangdong Jin, 2022. "Hydrological control of river and seawater lithium isotopes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Piotr Gołasa & Marcin Wysokiński & Wioletta Bieńkowska-Gołasa & Piotr Gradziuk & Magdalena Golonko & Barbara Gradziuk & Agnieszka Siedlecka & Arkadiusz Gromada, 2021. "Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used," Energies, MDPI, vol. 14(13), pages 1-20, June.
    13. Felipe O. Cerezer & Cristian S. Dambros & Marco T. P. Coelho & Fernanda A. S. Cassemiro & Elisa Barreto & James S. Albert & Rafael O. Wüest & Catherine H. Graham, 2023. "Accelerated body size evolution in upland environments is correlated with recent speciation in South American freshwater fishes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Dimitar Dimitrov & Xiaoting Xu & Xiangyan Su & Nawal Shrestha & Yunpeng Liu & Jonathan D. Kennedy & Lisha Lyu & David Nogués-Bravo & James Rosindell & Yong Yang & Jon Fjeldså & Jianquan Liu & Bernhard, 2023. "Diversification of flowering plants in space and time," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Jan Smyčka & Cristina Roquet & Martí Boleda & Adriana Alberti & Frédéric Boyer & Rolland Douzet & Christophe Perrier & Maxime Rome & Jean-Gabriel Valay & France Denoeud & Kristýna Šemberová & Niklaus , 2022. "Tempo and drivers of plant diversification in the European mountain system," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Tobias Andermann & Caroline A. E. Strömberg & Alexandre Antonelli & Daniele Silvestro, 2022. "The origin and evolution of open habitats in North America inferred by Bayesian deep learning models," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:86:y:2017:i:2:d:10.1007_s11069-016-2334-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.