IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0090184.html
   My bibliography  Save this article

Occlusal Enamel Complexity in Middle Miocene to Holocene Equids (Equidae: Perissodactyla) of North America

Author

Listed:
  • Nicholas A Famoso
  • Edward Byrd Davis

Abstract

Four groups of equids, “Anchitheriinae,” Merychippine-grade Equinae, Hipparionini, and Equini, coexisted in the middle Miocene, but only the Equini remains after 16 Myr of evolution and extinction. Each group is distinct in its occlusal enamel pattern. These patterns have been compared qualitatively but rarely quantitatively. The processes influencing the evolution of these occlusal patterns have not been thoroughly investigated with respect to phylogeny, tooth position, and climate through geologic time. We investigated Occlusal Enamel Index, a quantitative method for the analysis of the complexity of occlusal patterns. We used analyses of variance and an analysis of co-variance to test whether equid teeth increase resistive cutting area for food processing during mastication, as expressed in occlusal enamel complexity, in response to increased abrasion in their diet. Results suggest that occlusal enamel complexity was influenced by climate, phylogeny, and tooth position through time. Occlusal enamel complexity in middle Miocene to Modern horses increased as the animals experienced increased tooth abrasion and a cooling climate.

Suggested Citation

  • Nicholas A Famoso & Edward Byrd Davis, 2014. "Occlusal Enamel Complexity in Middle Miocene to Holocene Equids (Equidae: Perissodactyla) of North America," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
  • Handle: RePEc:plo:pone00:0090184
    DOI: 10.1371/journal.pone.0090184
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090184
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0090184&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0090184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James C. Zachos & Gerald R. Dickens & Richard E. Zeebe, 2008. "An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics," Nature, Nature, vol. 451(7176), pages 279-283, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Dietz & Nicholas Stern, 2014. "Endogenous growth, convexity of damages and climate risk: how Nordhaus� framework supports deep cuts in carbon emissions," GRI Working Papers 159, Grantham Research Institute on Climate Change and the Environment.
    2. Kopp, Robert E. & Mignone, Bryan K., 2012. "The US government's social cost of carbon estimates after their first two years: Pathways for improvement," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-41.
    3. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    4. Xiaojie Fan & Yongchao Lu & Jingyu Zhang & Shiqiang Wu & Liang Zhang & Xiaojuan Du & Qinyu Cui & Hao Wang, 2022. "Lithofacies Characteristics, Depositional Environment and Sequence Stratigraphic Framework in the Saline Lacustrine Basin-A Case Study of the Eocene Low Member of Xingouzui Formation, Jianghan Basin, ," Energies, MDPI, vol. 15(17), pages 1-17, August.
    5. Katherine A. Crichton & Jamie D. Wilson & Andy Ridgwell & Flavia Boscolo-Galazzo & Eleanor H. John & Bridget S. Wade & Paul N. Pearson, 2023. "What the geological past can tell us about the future of the ocean’s twilight zone," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Niccolò Baldassini & Agata Di Stefano, 2017. "Stratigraphic features of the Maltese Archipelago: a synthesis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 203-231, April.
    7. Ralph Hippe, 2015. "Why did the knowledge transition occur in the West and not in the East? ICT and the role of governments in Europe, East Asia and the Muslim world," GRI Working Papers 180, Grantham Research Institute on Climate Change and the Environment.
    8. Fei Zhang & Mathieu Dellinger & Robert G. Hilton & Jimin Yu & Mark B. Allen & Alexander L. Densmore & Hui Sun & Zhangdong Jin, 2022. "Hydrological control of river and seawater lithium isotopes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Corentin Jouault & André Nel & Vincent Perrichot & Frédéric Legendre & Fabien L. Condamine, 2022. "Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Piotr Gołasa & Marcin Wysokiński & Wioletta Bieńkowska-Gołasa & Piotr Gradziuk & Magdalena Golonko & Barbara Gradziuk & Agnieszka Siedlecka & Arkadiusz Gromada, 2021. "Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used," Energies, MDPI, vol. 14(13), pages 1-20, June.
    11. Felipe O. Cerezer & Cristian S. Dambros & Marco T. P. Coelho & Fernanda A. S. Cassemiro & Elisa Barreto & James S. Albert & Rafael O. Wüest & Catherine H. Graham, 2023. "Accelerated body size evolution in upland environments is correlated with recent speciation in South American freshwater fishes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Dimitar Dimitrov & Xiaoting Xu & Xiangyan Su & Nawal Shrestha & Yunpeng Liu & Jonathan D. Kennedy & Lisha Lyu & David Nogués-Bravo & James Rosindell & Yong Yang & Jon Fjeldså & Jianquan Liu & Bernhard, 2023. "Diversification of flowering plants in space and time," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Lewis A. Jones & Philip D. Mannion & Alexander Farnsworth & Fran Bragg & Daniel J. Lunt, 2022. "Climatic and tectonic drivers shaped the tropical distribution of coral reefs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Jan Smyčka & Cristina Roquet & Martí Boleda & Adriana Alberti & Frédéric Boyer & Rolland Douzet & Christophe Perrier & Maxime Rome & Jean-Gabriel Valay & France Denoeud & Kristýna Šemberová & Niklaus , 2022. "Tempo and drivers of plant diversification in the European mountain system," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Tobias Andermann & Caroline A. E. Strömberg & Alexandre Antonelli & Daniele Silvestro, 2022. "The origin and evolution of open habitats in North America inferred by Bayesian deep learning models," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Maria Helena Henriques & Keynesménio Neto, 2023. "A Geo-Itinerary to Foster Sustainable Tourism in West African Islands: Storytelling the Evolution of the Ancient Cameroon Volcanic Line Coral Reefs," Sustainability, MDPI, vol. 15(24), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0090184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.